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Let X and Y be Banach spaces and 7T, respectively S,
be a bounded linear transformation mapping X into Y, re-
spectively Y into X. It is well-known that a nonzero complex
number 2 belongs to the spectrum of ST precisely when 1
belongs to the spectrum of 7'S. The main result of §2 shows
that for 210 the states of the operators ST — Aly, TS — Iy
agree.

Sufficient conditions are obtained for this same result to
hold when T and S are unbounded closed linear transfor-
mations from X into Y and Y into X respectively. Section 4
compares spectral decompositions of ST and 7'S when these
sufficient conditions are satisfied.

Throughout this paper D(A) and R(A) will denote the domain and
range of A. The resolvent of A will be denoted o(A4), the spectrum
o0(A), the point spectrum p(A4) and the approximate point spectrum
a(4). [X, Y] will denote the set of all bounded linear transformations,
defined on the Banach space X into the Banach space Y. Any other
notation used will agree with that of [3]. When no confusion will
arise the identity operator will be denoted by I regardless of the space.
The following preliminary result can be easily varified.

ProposiTioN 1.1. If T:D(T)c X—Y, S: D(S)c Y—Xand x== 0,
then e p(TS) if and only if »e p(ST).

2. Continuous transformations.

PROPOSITION 2.1. If A= 0 then R(ST — M) = X precisely when
R(TS— ) =Y.

Proof. R(ST — M) = X implies that there exists an z'e X',
2’ # 0 such that z'((ST — M )(x)) = 0 for all x ¢ X. Consequently for
allze X, 0 = (ST — A1) (2'(x)) = (T'S" — M) (2'(x)) and N e p(T'S"). By
Proposition 1.1, xe p(S’'T") so 4" € Y’, ¥y’ %= 0 exists with the property
that for each ye Y, 0 = (ST — MD)W (W) = v' (TS — M)(y)). Thus
R(TS —\I) # Y.

The following is a construction of a “generalized” Banach space
in the manner of that of Berberian [2].
Denote by glim a fixed “generalized Banach limit” defined for all
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124 J. D. FAIRES

bounded sequences of complex numbers and having properties: ([1] —
page 34)

(i) glim(n, + p,) = glim\, + glim p,;

(ii) glim (Zn,) = A glim,;

(iii) glim A, = lim »,, if {\,} converges;

(iv) glim X, = 0 whenever A, = 0 for each =.

For a Banach space X, denote by <#(X) the set of all sequences
{z,} of elements of X for which sup ||z, < . If for s = {z,} and
t = {¢.} in ZZ(X) and complex \ we define s + ¢ = {®, + Y.}, s = {\x,}
and |[[s], = glim||z,| it is clear that <#(X) is a prenormed space.
If 4(X)={seZX):]|s|l,=0} then FX)=FX)A4(X) is a
normed vector space whose completion will be denoted by 22(X). Since
x— {x} + #7(X) is an isomorphism of X into a closed linear subspace
X’ of the Banach space 2#(X), X can be identified with this subspace
and X’ is called the generalized extension of X.

For Te[X, Y] define «&(T): Z(X)— (YY) as Z(T): s = {x,} —
{Tx,}. T is bounded so <Z(T) is bounded and ||Z(T)|.=|T]|l.
Moreover, <Z(T): 4 (X)— A47(Y) so <Z(T) may be extended to F#(X)
and consequently to X’ to obtain a unique extension 7" e [X’, Y] of
T with || T']| = || T|l.

For T, T.€[X, Y] and Se[Y, X] the following properties can be
verified directly:

( i ) (Tl +- Tz), = Tl’ + Tz':

(ii) (AT) =\T{;

(iii) (STY = S'T}.

The next proposition gives the results which necessitated the
preceding construction. For the Hilbert space analogue of this propo-
sition, see Berberian [2], Theorem 1.

PrOPOSITION 2.2. Let Ac[X, X] then a(A) = a(A") = p(4).

Proof. nea(A') implies that for each € >0 an se X' exists with
| (A" — AI)s|| <ells|l. Since () is dense in X', it may be assumed
that s = {z,} e P(X). Thus |[(4’'— A)s|| =glim|[(4A — M)z, || <
eglim||%,|] so 0> glim[e||«,| —|| (4 — A])z,||]]. By property (iv) of
glim it must be true that for at least one n, 0 <e ||z, | —|[(A —A])z, ||
and hence for some x,¢ X, ||(4 — A)z,|| < el z,|l, which implies
»e a(4).

To complete the proof of this proposition, if suffices to show that
a(A) c p(4’). For ne a(A), a sequence {x,} in X exists with ||z, || =1
for all n and || (A — \])z, ||—0. {z,} is bounded in normso s = {x,} € X',
[[s{|=1and ||(A"— A])s|| = glim || (A — A)z,|| = 0. Hence A€ p(4').

Considering Te[X, Y] and Se[Y, X] we obtain:
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COROLLARY 2.1. If )= 0 then ne a(TS) if and only if nea(ST).

Proof. By Proposition 2.2, » € a(7'S) implies » € p((TS)) = p(T"S’).
Hence by Proposition 1.1, v e p{S'T") = a(ST).

The preceding corollary together with the result of Propositions
1.1 and 2.1 prove the following theorem. The classification of states
of a linear operator may be found in [5].

THEOREM 2.1. If Te|[X, Y], SelY, X] and )\ =0, then the
states of TS — N and ST — NI agree.

Proof. To show that one of the operators cannot be in state I,
while the other is in state II,, a theorem of Goldberg [4], Theorem
11 4.4, is used which in our case states:

(i) T has a bounded inverse if and only if B(T*) = X*.

(ii) 7* has a bounded inverse if and only if R(T) = Y.

3. Closed transformations. Let 7 be a closed linear transfor-
mation with D(T) and R(T) both contained in the Banach space X.
Suppose further that o(T) + ¢, that a e o(T) is fixed and 4¢[X, X]
is defined by A = (T — aI)*. The following theorems are due to
Taylor [6].

THEOREM 3.1. Suppose ¢ and h are complex numbers satisfying
(N — ajp = 1:

(i) If veX and (I — Az =y then (T — N){(px — y) = (Y5
(ii) If ce D(T) and (T — x)x =y then (¢l — A)x = pAy.
Furthermore, pl — A is 1-1 precisely when T — NI is 1-1 and on the
common domain of theitr inverses (¢ — AY™ = p?[pl + (T — A7

and (T — M7= w{pd — Ay A = pA{pl — A

THEOREM 3.2. Let  and [t satisfy (v — a)pt = 1. Then \ belongs
te o(T) if and only if 1t belongs to p{A).

The following lemma follows from the closed graph theorem and
will be needed often in our development:

LEMMA 8.1. If P: D{PYC Y—Z is a ¢losed linear transformation
and Qe l|X, Y] where X, Y, Z are Banach spaces, then PQ s closed
and if R(Q)C D(P) then PQc|X, Z].

For T closed with D(T) and R(T) both in X and 0 = aec o(T)
we define A = (T —aly*and B= T(T — al)™(T—«l"). (By Lemma
3.1, Be[X, X].)
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The next three propositions give the substance for a method of
referring a pair of closed operators to a pair which are continuous and
everywhere defined.

ProrosiTION 3.1. Consider T, A, and B as defined above and 0=
acpop(T). For 0#r=a, let v=_>O/N—a)P), t=>0/N— a)). Then
R(B — vI)c R(T — \I).

Proof. Suppose y = (B — vI)x. Then y + ve = (T — al) [z +
a(T — al)'x]le D(T — aI) = D(T — M) and (T — M)y + vx) + (A —
a)y +vx) =2+ a(T— al)'z; so —1/a[(T—N)(y + vz) + (W — @)y] =
px — Ax. If Theorem 8.1, part (i), is applied, we obtain that
1/a[(T — M)y + vx) + (M — @)y] € R(T — \I) so that

(T — u){px + %{(T— Ay + vo) + (0 — )]

(1) 1 1 _ -1
+ =y +v)} = ——y e R(T ~ ).
pHa ayu

PrOPOSITION 3.2. If M= 0 1s such that for some 0=+ aco(T),
a’/ne o(T) also, then R(T — NI)cC R(B — vI).

Proof. We may assume, without loss of generality, that \ == «,
for if 0 = a € o(T) there exists some ¢ > 0 with O¢ {¢#||g— 1| < a}C
o(T) and N = a + (a/2)e”’, where 6 is the argument of «, will satisfy
our hypothesis.

For e D(T), BTx = » + aAx + aBx. Consequently, if (T —
AM)x =y, then (y — a@)Bx = ¢ + aAx — By. Theorem 3.1, part (ii),
implies (I — A)x = Ay so (W — a)Bx = vz — apAy — By. Thus

(B —»D)(w + py) = =52 Ay — vpry

. ay 1

- @l

By hypothesis, a*/x € o(T), so Theorem 3.2 may be used to obtain

1
— = _cpo(A
@\ — @) € o(4)
and
—ewv, 4> (B -
2y [A Ty I] (B — vI)@ + 1) -
Since [A - g :l_l and B — vl commute,
(a* — a))
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(2) Ly = (B- uI)[A - @7\1_—“)1]'1 (@ + py)e R(B — vI) .

The following proposition follows easily by considering equations
(1) and (2), together with the result of Theorem 3.2.

PROPOSITION 3.3. Suppose ) = 0 and for some « = 0 in o(T),
a’ne o(T) also. Then T — NI is 1-1 precisely when B — vI is 1-1.

The following theorem is an immediate consequence of the Propo-
sitions 3.1, 3.2, 3.3, and the closed graph theorem.

THEOREM 8.3. Let T be a closed linear operator with D(T) and
R(T) both contained in the Banach space X. Suppese »# 0 15 a
complex number with the property that for some ae p(T), a?/xe o(T)
also, then the state of T — NI is the same as the state of B — vl.

For the remainder of this section, we consider a pair of closed
linear transformations, 7" D(T)c X— Y and S: D(S)c Y — X, with
the property that ST and TS are both closed on their respective
domains. We assume moreover that o(7S) N o(ST) = @ and for
ae o(TS) N p(ST) fixed we define:

AST) = (ST — aD)™, A(TS) = (TS — al)™*
and
B(ST) = ST(ST — «Iy (ST — )™
B(TS) = TS(TS — «I) (TS — al)™".
When z € D(T), TA(ST)x = A(TS)Tx; thus B(ST) and B(TS) may
be rewritten:
B(ST) = S(TS — aI)'T(ST — al)y* = SA(TS)TA(ST)
B(TS) = T(ST — aI)'S(TS — al) = TA(ST)SA(TS) .
Since R(A(ST))c D(T) and R(A(TS))C D(S), Lemma 3.1 shows
that TA(ST)e[X, Y] and SA(TS)ec[Y, X]. By Theorem 2.1, when-

ever v == 0, the state of B(TS) — v[ is the same as the state of
B(ST) — vI, which gives the main result in this section:

THEOREM 38.4. If ) = 0 1s such that for some a € o(ST) N o(TS),
a*/ne o(ST) N p(TS) also, the state of ST — N is the same as the
state of TS — NI

It is conjectured that the hypothesis of Theorem 3.4 can be
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weakened to simply requiring that o(ST) N o(TS) = {0}. A different
method of proof would likely be needed, however.

In the remainder of this section we consider conditions on the
transformations S and 7 which will ensure that the hypotheses of
Theorem 3.4 are fulfilled. We first need the following propositions:

ProrosiTioN 3.4. If T, S, TS, and ST are closed and N\ = 0 is
such that xeo(TS) N o(ST), then whenever a e p(TS) N p(ST),

az
N €o(ST) .

Proof. Since ne o(ST), ST — M is 1-1; so by Theorem 3.4, T'S — A1
is also 1-1, and N € o(TS) implies R(TS — M) = Y. For 0= a e p(TS)
and v = /(M — a)* we have by Proposition 3.1

R(B(TS) — vI) < R(TS — \I)

and consequently

REB(IS) —vD) = Y.
By Theorem 3.3 R(B(ST) — vI) = X. If a*/\e o(ST), then
R(ST — M) R(B(ST) — vI),
SO
R(ST) —\I) # X .

This clearly contradicts our assumption of xe p(ST).

Prorosition 38.5. If T, S, TS, and ST are closed and 0,, respec-
tively p,, are comnected components of p(ST), respectively o(TS), then

(0. — 02) U (0, — 0,) < {0}.

Proof. It suffices to show that both p, N dp, {0}, where dp,
denotes the boundary of 0, and o, N dp, < {0}.

To prove the former, suppose 0 = nep, N 0p,. Then reo(TS)
and there is an open set N with xe NC p,. We may therefore con-
struct a sequence \,€ 0, o, for all » with the property that A,
converges to M. By Proposition 3.4 2/x € 6(ST) whenever pe o(ST) N
o(TS). In particular (A,)/»€o(ST) for all ». This is clearly im-
possible since (M,)*/A converges to : and eventually (\,)*/x€ N.

The next two propositions give sufficient conditions for the
hypothesis of Theorem 3.4 to be fulfilled.
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ProposSITION 3.6. If T, S, TS, and ST are closed and such that
there exists a metghborhood of zero intersected with an open half
plane about the origin which is a subset of o(ST) N p(TS) then the
state of TS — NI 1s the same as the state of ST — N whenever f = 0.

Proof. Suppose D= {u||p| <r}c U is contained in o(ST)N
o(TS), where U denotes the open upper half plane.

Given A = 0, choose « satisfying

(i) 0<|a| <min{r, [N}

(ii) argument of «, arg «, is as follows:

(a) =/4if argx = 0;

(b) argx if 0 <argx <m;

(¢) 3z/4if arg )\ = 7;

(d) w/2+ argn/4 if T <argrs < 2rx.

By direct calculation, it can be shown that both a and a®/A
belong to Dc p(ST) N o(TS) and consequently by Theorem 3.4, the
states of TS — NI and ST — N[ agree. It is clear, by the method
in which « was chosen, that our assumption of U being the open
upper half plane involves no loss of generality. Any other open half
plane about the origin would simply introduce a change in arg «.

Note that if S, T, ST, and TS are closed operators in a Hilbert
space with both ST and T'S self-adjoint, the hypotheses of Proposition
3.6 hold.

ProrosITION 3.7. Let T, S, TS, and ST be closed and such that
there exists a half plane entirely contained in o(ST) N o(TS). Then
the state of ST — M is the same as the state of TS — N whenever
no= Q.

Proof. Suppose that Uis a half plane contained in o(ST)N o(TS).
We may assume, without loss of generality, that

U= {¢|IM(z)) > R} where R > 1.

For X\ = 0 we choose « as follows:
(i) If argh =0, then arga = 7/4 and || = max{aR, |\ |};
(ii) If arg\ ==, then arga = 37/4 and |a| = max {aR, |M|};
(iii) If 0 < argx < m, then arga = arg ) and

aR } ;

o] = max {1, T
sin (arg \)

(iv) If = <arg, < 27, then arga = arg » — @ and

jaf = max {In], 1.
sin (arg » — @)
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It can be demonstrated in a straight forward manner that both
a and a*/n are in o(ST) N p(TS) in each case.

4. Spectral decompositions. The notation in the following dis-
cussion is full explained in [5].

THEOREM 4.1. If D is a bounded Cauchy domain satisfying
oD c p(ST) N p(TS)

then there exists a pair of closed subspaces (X, X,) of X and (Y,, Y,)
of Y such that

(i) (X, X.) completely reduces ST;

(ii) (Y, Y,) completely reduces TS;

(iii) (ST),=ST| X, and (TS),= TS|Y, are continuous with
domains X,, Y, respectively;

(ivy "X, - Y, 8 Y, —-X,i1=1,2.

Proof. Let

o,=DnNnao,(ST),
o,=DnNao(TS),

where o, denotes the extended spectrum of the transformation. o,
and o, are bounded spectral sets for ST and TS respectively. Let
7, = 0,(ST) — o, and 7, = 6,(TS) — 0, be their complementary spectral
sets. ‘

If E(0), E(0,), E(z), and E(z,) are the projections associated with
these spectral sets with ranges X,, Y;, X,, and Y, respectively, it is
well-known, see [5], that statements (i), (ii), and (iii) are satisfied.

For xe X, E(c)r e X, and

TE(o)x = T[—% S+an (ST — xI)‘ld)»]x

_ [_% Lw T(ST — xI)*‘d)\,]x

- [—__1 : S (TS — M)”‘dkj To
271 J+op
= F(o,)Tx .
so T X, — Y.
Similarly, if x¢ X, E(r)x € X, and

TE(r) = T(I — E(o))x = Tx — TE(o,)x
= — E(0,))Tx = E(z,))Tx .
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So T X,— Y,.
In a similar manner S:Y,— X,, S: Y,— X, which completes the
proof of the theorem.

THEOREM 4.2. If D is a bounded Cauchy domain with
oD < o(ST) N p(TS)
and
o,=Dno(ST), o,=DNo/(TS),
then
(0, — o) U (o, — a){0}.

If in addition 0e¢ D, then

(1) the complementary spectral sets v, and T, are equal;

(ii) the state of ST — NI is the same as the state of TS — M1,
whenever N == 0.

Proof. Using the notation of Theorem 4.1, let T, =T|X,
S;=81Y,4=12. Since T, S, T,S,, and S;T,, © = 1, 2, are restric-
tions of closed operators to closed subspaces, they are closed. Fur-
thermore, S,T; = (ST),, T.S; = (TS), for i =1, 2.

By Theorem 4.1, ST, e[X,, X,] and T,S,¢[Y, Y.] and therefore
satisfy the hypotheses of Theorem 1.1. Thus for ) s« 0, the state of
S, T, — ME(o,) agrees with the state of T.S, — ME(o,).

When 0e D the sets 0(S,T,) = 7, and (7,8, = 7, are bounded
away from zero. Consequently by Proposition 3.6, the state of S,7, —
AE(t) agrees with the state of T.S, — ME(7,) whenever \ == 0.

It can be seen that the above is both necessary and sufficient for
the state of ST — M\ to be the same as the state of T'S — A1,

From the preceding theorems we obtain the final results:

THEOREM 4.3. Suppose 0¢ o(TS) N o(ST) and a bounded Cauchy
domain D extsts satisfying:

(i) oDc p(ST)nN o(T8);

(ii) 0eD.

If 0, -+-, 0, is a spectral decomposition of ¢,(ST) then o, oy,
cee, 0, 18 a spectral decomposition of o {TS) where

O, = {O}

whenever 0eo(TS) N p(ST), and is empty otherwise.
Moreover, if E(ST) and E(TS) are the projections associated
with these spectral sets with ranges X, and Y, respectively, then
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"X, —7,;
S:Y, — X,
where 1 =1, -+, n, and when 0eo(TS) N o(ST),
S: Y, — {0} .
Proof. First note that by Theorem 4.2,
(0(ST) — 6 (TS)) U (6 (TS) — o(ST)) c {0}

and since 0,(ST) and o,(TS) are both closed subsets of the complex
plane, if 0eo(TS)N p(ST) it must be an isolated point in o(TS).
This demonstrates that the spectral decomposition a,, -+, g, of ¢,(ST)
gives rise to the spectral decomposition o, o,, - -, 0, of ¢, (TS).

If o eco(ST), i.e., if ST¢[X, X], assume that «eo,. Then
0y, +++, 0,_, are bounded spectral sets for both ST and TS.

Let D, be an admissible domain for o,, 1 =1, .-+, n — 1. Then
E(ST) = — -1 S (ST — AI)~"dr
271 J+ep;
and

E(TS) = __2% LD_(TS — D) .

By Theorem 4.1,
T X,—Y,,
S: Yz — Xq, ’

1=1, «-+, m — 1, moreover T, S are continuous and everywhere defined
on these subspaces.

Further, if 0eo(TS) N p(ST) and D, is an admissible domain for
0, let ye Y,. By Theorem 4.1, y € D(S) and

Sy = SE(TS)y

_ S(“szlz—i SMO (TS — xI)*ldx>y
_ (_% SWO (ST — M)‘%ih) Sy

=0.
To show that T: X,— Y,, S: Y, — X, observe that

E(ST) = I~ S E(ST)

and
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E(TS) =1 — gEL(TS)

where E,(TS) = 0 if 0e o(TS).

When Te[X, Y], Se[Y, X] we clearly have a bounded Cauchy
domain

D ={p]|| ] <max (| ST, [| TSI) + 1}

which satisfies the conditions of Theorem 4.3. Hence:

COROLLARY 4.1. If TelX, Y], Sel|Y, X] and 0¢ o(TS) N a(ST)
then a spectral decomposition o, ---, 0, of o(ST) gives a spectral
decomposition o, G, -+, 0, of o(TS) where

({0} whenever 0co(TS)N p(ST)

0 = .
6 otherwise .

Moreover, iof E(ST) and E(TS) are the projections associated
with the spectral sets with ranges X, and Y, respectively, then
"X—-Y, S:V,—-X,, i=1,.---,n and when 0co(TS)N p(ST),
S: Y, — {0}.
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