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RAMSEY THEORY AND CHROMATIC NUMBERS

GARY CHARTRAND AND ALBERT D. POLIMENI

Let %(G) denote the chromatic number of a graph G. For
positive integers n,, n,, ---, 7, ( = 1) the chromatic Ramsey
number %(n,, ng, - -, ;) is defined as the least positive integer
p such that for any factorization K, = Ui, G;, x(G;) = n, for
at least one 2,1 <7 <Fk. It is shown that x(n, %, ---, %) =
1+ TI%, (n; —1). The vertex-arboricity a(G) of a graph G is
the fewest number of subsets into which the vertex set of G
can be partitioned so that each subset induces an acyclic
graph. For positive integers n,, %z, -+, 7 (K = 1) the vertex-
arboricity Ramsey number a(n, %y, ---, n,) is defined as the
least positive integer p such that for any factorization K, =
Ut.. Gy, a(G,) = n; for at least one 4,1 <17 <Fk. It is shown
that a(ng, n,, -+, ) =1 + 26 TT%, (0, — 1).

Introduction. The classical Ramsey number r(m, n), for positive
integers m and =, is the least positive integer p» such that for any
graph G of order p, either G contains the complete graph K, of
order m as a subgraph or the complement G of G contains K, as a
subgraph. More generally, for k(= 1) positive integers n,, %, -+ -, Ny,
the Ramsey number r(n, n, ---, n,) is defined as the least positive
integer p such that for any factorization K, = G,U G, U --- UG, (i.e.,
the G, are spanning, pairwise edge-disjoint, possibly empty subgraphs
of K, such that the union of the edge sets of the G, equals the edge
set of K,), G; contains K, as a subgraph for at least one 7,1 <¢ <
k. It is known (see [5]) that all such Ramsey numbers exist; how-
ever, the actual values of »(n, %, -+, 7y), k = 1, are known in only
seven cases (see [2, 3]) for which min {n, %, ---, n;} = 3.

A clique in a graph G is a maximal complete subgraph of G.
The clique number w(G) is the maximum order among the cliques of
G. The Ramsey number »(n,, n,, ---, n,) may be alternatively defined
as the least positive integer p» such that for any factorization K, =
G.UG U -+ UG, o(G) = n,; for at least one 3,1 <17 < k.

The foregoing observation suggests the following definition. Let
f be a graphical parameter, and let =, %, ---, n;, k= 1 be positive
integers. The f-Ramsey number f(n, m, ---, m,) is the least positive
integer » such that for any factorization K, = G, UG, U +-- U Gy,
AG) = n, for at least one 4,1 < ¢ =< k. Hence, w(n, %y -, m) =
r(Ny, Ny, +++, W), i.€., the w-Ramsey number is the Ramsey number.

The object of this paper is to investigate f~-Ramsey numbers for
two graphical parameters f, namely chromatic number and vertex-
arboricity.
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Chromatic Ramsey numbers. The chromatic number %(G) of a
graph G is the fewest number of colors which may be assigned to
the vertices of G so that adjacent vertices are assigned different
colors. For positive integers n, #,, ---, n,, the chromatic Ramsey
number ¥(,, 1, -+, n,) is the least positive integer p such that for
any factorization K, = G,U G, U +-- Gy, Y(G,) = n, for some 4,1 < i <
k. The existence of the numbers ¥(n, #, ---, n,) is guaranteed by
the fact that y(n, n, ---, 1) < r(n, %, -+, #,). We are now pre-
pared to present a formula for ¥(n, n, ---, n,). We begin with a
lemma.

LEMMA. If G=G, UG, U - - UG, then
k
1@ = 3 1(G) -

Proof. For i =1,2, ---, k, let a x(Gy)-coloring be given for G,.
We assign to a vertex » of G the color (c, ¢, ---, ¢;), Where ¢, is
the color assigned to v in G,. This produces a coloring of G using
at most JT%, x(G,) colors; hence, Y(G) < . x(G).

THEOREM 1. For positive integers n, M, +++, Ny,
&
X(nly Ny = * 2, nk) =1 + E(nt - 1) .

Proof. The result is immediate if n, = 1 for some 4; hence, we
assume that n, = 2 for all ¢,1 <7 < k. First, we verify that

k
Aty Mgy woey ) S 1+ JT (0 — 1)
Let p =1+ [I%,(n, — 1), and assume there exists a factorization

K, = G,UG,U--- UG, such that ¥(G,) £ n,—1foreacht=1,2, -+, k.
Then by the Lemma, it follows that

u'}jw
==

(’ﬂ/—-l),

Ilmw

[ (n; — 1) = 1(K,) = [T 2(G) = ]

which produces a contradiction. Thus, in any factorization K, =
G,UGU -~ UG, for p=1+ [k, (n, — 1), we have %(G,) = n, for

at least one 7, 1 <1 < k.
In order to show that

k
X(nh Ty * 'n'k) = 1+ I_Il(nz - 1) ’

we exhibit a factorization Ky, = G,UG,U -+ UG, where N, =
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Yal,—1) and y(G)=m, —1fori=1,2 ---, k. The factorization
is accomplished by employing induction on k. For k =1, we simply
observe that x(Ky) = x(K._,) = n, — 1. Assume there exists a fac-
torization Ky, = H,U H,U --+ U H,_, such that x(H,) <=, — 1 for
1=12 ---,k— 1. Let F denote n, — 1 (pairwise disjoint) copies of
Ky, , and define G, by G, = F. Thus, G, contains %, — 1 pairwise
disjoint copies of H, for 1 =1,2, ---, k — 1, which we denote by G..
Hence, Ky, =G, UG, U -+- UG,, where x(G,) =<n, —1 for each ¢,
1 £4 £k, which produces the desired result.

Vertex-arboricity Ramsey numbers. The vertex-arboricity a(G)
of a graph G is the minimum number of subsets into which the ver-
tex set of G may be partitioned so that each subset induces an
acyclic subgraph. As with the chromatic number, the vertex-arbo-
ricity may be considered a coloring number since a(G) is the least
number of colors which may be assigned to the vertices of G so that
no cycle of G has all of its vertices assigned the same color.

Our next result will establish a formula for the vertex-arboricity
Ramsey number a(n,, n, ---, n,), defined as the least positive integer »
such that for every factorization K, = G, U G, U - - - UG,, a(G;) = », for
some ¢, 1 <t < k. Since a(K,) = {n/2}, it follows that a(n, n, -,
n) <r@n, — 1,20, — 1, -+, 2n, — 1). In the proof of the following
result, we shall make use of the (edge) arboricity a,(G) of a graph,
which is the minimum number of subsets into which the edge set of
G may be partitioned so that the subgraph induced by each subset
is acyclic. It is known (see [1, 4]) that a,(K,) = {n/2}.

THEOREM 2. For positive integers n, f,, «--, g,

k
a’(nlynZy “'7nk)=1+2k];[(ni_1)’

Proof. In order to show that
k
a(nlf Mgy = v, nk) = 1+2k1:_[(’n2—~ 1) ’

we let p =1+ 2k [Tk, (»; — 1) and assume there exists a factoriza-
tion K, =G,UG,U --- UG, such that a(G;) < n, — 1 for each i =
1,2 -+, k. Foreachi=1,2, ..., k, there is a partition {U,,, U,,, -,
Ui .-} of the vertex set V(G,) of G, such that the subgraph (U, ;)
of G, induced by U, ; is acyeclic, j=1,2, --., n, — 1. At least one
of the sets U, U, -+, Uya_y, say U,., contains at least 1+
2k T1k-. (», — 1) vertices. Thus, at least one of the sets U,,, U,,, -,
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U nys» 83y U, .,,, contains at least 1 + 2k [T%,(n; — 1) vertices of
U, . Proceeding inductively, we arrive at subsets U, ., Upm, **-,
Ui m, such that Ni., U, contains at least 1 + 2k [Ti... (n; — 1) ver-
tices, 1 =t =<k — 1. In particular, Ni., U, ., contains a set U hav-
ing 1+ 2k vertices. For each 7=12 ..., k, (U) is an acyclic
subgraph of the graph (U, ,>. This implies that a,(K,») = &, which
is contradictory. Therefore, a(G,) = n, for at least one 7,1 <1 < k.
The proof will be complete once we have verified that

k
a(nlyn27 "‘,nk)Zl‘l‘Zk[I(’”q—l)-

Let 7 = [[f.(n; — 1). We shall exhibit a factorization K, = G, U
G,U -+ UG, such that a(G)=n,—1 for i1=12 ---, k. We begin
with » pairwise disjoint copies of K,,, labeled K}, Kz, ---, Kj. Since
a.(K,,) = k, it follows that K,, = Ui, F;, where each F| is an acyclic
graph. We introduce the notation F';, to denote the F, contained in

=12 -, rand t=1,2, ---, k. With each of the r k-tuples
(e, € ++*,C)y ¢;=1,2 -+ m;—1 and j=1,2 ---, k, we identify
a complete graph K}, 1 =1,2, ---, r, in such a way that the identi-
fication is one-to-one. Then, foreach¢=1,2 -.-, kandl =12, ---,
r, we associate with F',, the k-tuple identified with K}. Define the
graph G, 1 =1,2, ---, k, to consist of the graphs F,, F,,, ---, F,,;
in addition, each vertex of F,, is adjacent to each vertex of F,,
s,t =12 ---,r, provided the ith coordinate is the first coordinate
in which their associated k-tuples differ (otherwise, there are no edges
between F,, and F,). It is then seen that K,, = U:,G,. For
each t+ =1,2 .--, k, define V,; to be the set of all vertices v such
that v is a vertex of an F';, whose associated k-tuple (¢, ¢, --, ¢)
has ¢, =J; 7=1,2,---,m;—1. Then {V,, Viyp -++, Vini} is a
partition of V(G,) for which the subgraph (V,;> consists of
r/(n; — 1) pairwise disjoint copies of F,, 7 =1,2, .-+, n;, — 1. Thus,
{V,;> is an acyclic graph for each such j. Hence, a(G)) < n, — 1,
=12 ---, k.
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