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A set of linear operators from one Banach space to
another is collectively compact if and only if the union of
the images of the unit ball has compact closure. Semi-groups
S = {T(t): t ^ 0} of bounded linear operators on a complex
Banach space into itself and in which every operator T(t),
t > 0 is compact are considered. Since Tit, + t2) = T(tJT(tJ
for each operator in the semi-group, it would be expected
that the theory of collectively compact sets of linear operators
could be profitably applied to semi-groups.

1* Introduction* Let X be a complex Banach space with unit
ball Xλ and let [X, X] denote the space of all bounded linear
operators on X equipped with the uniform operator topology. The
semi-group definitions and terminology used are those of Hille and
Phillips [6]. Let S be a semi-group of vector-valued functions
T: [0, oo)—>[X, X]. It is assumed that T(t) is strongly continuous
for t ^ 0. If l i m ^ || T(t)x - T(to)x || = 0 for each t0 ^ 0, xeX and
if there is a constant M such that the || T(t) || ^ M for each t ^ 0,
then S — {T(t): t >̂ 0} is called an equicontinuous semi-group of class
Co. The infinitesimal generator A of the semi-group S is defined by

Ax = lim— [T(s)x - x]
s->o S

whenever the limit exists. The domain D(A) of A is a dense
subset of X consisting of just those elements x for which this
limit exists. A is a closed linear operator having resolvents R(X)
which, for each complex number λ with the real part of λ greater
than zero, are given by the absolutely summable Riemann-Stieltjes
integral

(1) R(X)x = Γ e~uT(t)xdt, x e X .
Jo

It follows from (1) that

(2) M-M τ >rβ(λ)>0.
re(X)

In particular, sets of the type {R(X): re(X) ^ a > 0} are equicontinuous
subsets of [X, X].

Results yielding the collective compactness of the resolvents of
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A have recently been obtained independently by N. E. Joshi and M. V.
Deshpande.

2* Semi-groups of compact operators* First, note that (1)
states that the resolvents of A are Laplace transforms of the semi-
group S. Consequently, there are many other important integral
expressions involving the elements of the semi-group and the re-
solvents. In order to take advantage of these, we prove the follow-
ing lemma, in which | v \ denotes the total variation of a complex
measure v.

LEMMA 2.1. Let Ω be a topological space and ^€ a collection
of complex-valued Borel measures on Ω. Suppose there exists a
constant a for which \ v \ Ω ̂  a for each v e ^f. Let J%Γ: Ω —> [X, X]
be an operator-valued function defined on Ω which is strongly
measurable with respect to each veM [6, page 74] and suppose
3ίΓ — {K(w): w 6 Ω} is a bounded subset of [X, X], For each v e ^

and x 6 X, let Fυ(x) = \ K{w)xdv, where the integral exists in the
\\K(w)x\\d v\ < oo [6, page 80]. Let ^

Ω

{Fv\vz^£). Whenever 3ίί(5ίr*) is collectively compact,
is also collectively compact.

Proof. Assume that 3ίΓ is collectively compact. Let B —
{K(w)x:we Ω, \\x\\ <; 1} and let C denote the balanced convex hull
of B. Both B and C are totally bounded subsets of X. It suffices
to show that Fυ(x)eaC for any Fve^ and x with ||a?|| <£ 1. Let
ε > 0 and choose {K{w^)xu , K(wn)xn), an ε/α-net for B. For
i = 1, . . .9n, let Ω, = {w: || K(w)x - K{wτ)x% \\ ^ ε/a} and let Ω\ =
Ωj\\J}z\ Ω3 be a decomposition of the Ωt into pairwise disjoint sets.
Then

ψv(x) - ± KiwJxMΩ'dW ^ Σ \Q, II K(w)x - K(wt)xt \\d\v\(w)

Since Σ?=i I vW) I = a> Σ?=i K(wt)XiV(Ωi) is an element of aC. It
follows that Fv(x) e aC and so ^ is also collectively compact.

Now assume that «_̂ ~* is collectively compact. Let V be any
neighborhood of 0 in the norm topology of X. There exists an
ε > 0 such that U = {x: \\ x || ^ ε} s V. Since J Γ * is collectively
compact, [2, Theorem 2.11, part (c)] implies that there exists a weak
neighborhood W of the origin with J T ( W Π Xd S (1/α) U. For

G WΠXlf \\Fv(x)\\ £ \ \\K(w)x\\d\v\ ^ (ε/α) | v \ (Ω) ^
JΩ
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ε. So J^(WΠ X,) S V. Again using [2, Theorem 2.1, part (c)], we
see that J^* is also collectively compact.

The following is essentially a result of P. Lax [6, page 304],
Rephrased in the terminology of collectively compact sets of operators,
it becomes quite transparent.

THEOREM 2.2. Suppose that some T(t0), tQ > 0, is a compact
operator. Then JίΓ = {T(t): t ;> t0} is a totally bounded, collectively
compact subset of [X> X], Consequently, T(t) is continuous in the
uniform operator topology for t ^ t0.

Proof. Since T(t) = T(t - to)T(to) = T(tQ)T(t - t0) for ί ^ ί0, it
follows that ST = T(Q<9* = S^T(Q. T(tQ) is a compact operator
and the collection Sf is equicontinuous. By Lemmas 2.1 and 2.3 of
[2], both JίΓ and ̂ * are collectively compact. [2, Corollary 2.6]
implies that JίΓ is a totally bounded subset of [X, X], Since T(£)
is continuous in the strong operator topology, T(t) is continuous in
the uniform operator topology for t ^ ί0.

COROLLARY 2.3. Suppose every T(t)> t>0, is a compact operator.
Let J^ — {lϋ(λ): re(X) ^ 1} be the collection of the resolvents of the
infinitesimal generator A corresponding to the half-plane {λ e
C:re(λ)^l}. Then J?~ is a totally bounded, collectively compact
set of operators.

It should be noted that for any a > 0, the following arguments
can be applied to {R(X): re(X) Ξ> a}. One particular half-plane is
chosen simply to keep the notation as uncomplicated as possible.

Proof. It will suffice to show that for each ε > 0, there exists
a totally bounded, collectively compact set of operators ^Γ such
that for any R(X)e^9 there exists a KeST with || JK(λ) - K\\ ̂  e.

e"*dt < ε/M, where M is such that

|| T{X) || £ M for t > 0. Let X be any complex number with re(X) ̂  1

and xeX. Since R(X)x = Γ e~λtT(t)xdt, R(X)x - Γ e~λtT{t)xdt g

Γ e~λt || T(t)x || d ί ̂  Γ e-*dtM]\ x \\ £e\\x | |. C o n s e q u e n t l y , | |ϋί(λ) -
Jo^ Jo 11

^e'ztT(t)dt^e. Now ^ r = {Γe-*Γ(ί)eiί: rβ(λ) ^ l j is a totally

bounded, collectively compact set of operators. To see this, note

that sup | ϊ I e~u \ dt: re(X) ^ l l ^ 1 and that both {T(t): t ^ d} and

{T*(t): t ^ δ} are collectively compact. Lemma 2.1 implies that both
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and ^ ^ * are collectively compact. As before, [2, Corollary 2.6]
implies that 3tΓ is a totally bounded subset of [X, X].

The following lemma will be useful in the next section. Since
a quotable reference cannot be found, a brief proof is included.

LEMMA 2.4. Let Sf be an equicontinuous semi-group of class
Co. Then R(X) converges to zero in the strong operator topology as
I λ I —> oo, re(λ) ^ 1. Whenever {R(X): re(X) ;> 1} is a totally bounded
subset of [X, X], the R(X) converge to zero in the uniform operator
topology as \ X | —> oo, re(X) ^> 1.

Proof. The second assertion follows immediately from the first.

Let x e D(A), the domain of the infinitesimal generator A. Since
R(X)(X — A)x — x, we have the identity

R(χ)x = λ.[χ + R(χ)Ax] .
X

By (2) of § 1, {R(X)Ax: re{X) ^ 1} is a bounded subset of X. It follows
that ||.R(λ)cc||->0 as |λ|-->oo, re(X) ^ 1, for each xeD(A). Since
D(A) is dense in X, the Banach-Steinhaus theorem implies that this
type of convergence holds for each xeX. We see that the first
assertion of this lemma holds also.

3* Semi-groups with compact resolvents* Suppose that the
domain of the infinitesimal generator of a semi-group can be given
a topology τ such that the topological space (D(A), τ> is a Banach
space and the natural injection i: (D(A), τ> —> X is a compact operator.
In such cases, it might be possible to prove that certain sets of the
resolvents of A are equicontinuous subsets of [X, (D(A), τ>], i.e.,
collectively compact subsets of [X, X]. A specific example is the
case in which X is some Lp space and A is the negative of a
uniformly strongly elliptic differential operator defined on a Sobolev
space H = (D(A), τ). The so-called "a priori inequalities" [4,
Theorems 18.2 and 19.2, pages 69 and 77] imply that, after a
suitable translation, {12(λ): re(X) ^ 1} is an equicontinuous subset of
[Lp, H], Since the injection i:H—+Lp is a compact operator [4,
Theorem 11.2, page 31], {R(X): re(X) ^ 1} is a collectively compact
subset of [Lp, Lp]. The obvious question is what are the implications
of such assumptions for a general semi-group Sf.

We first consider the case in which A has one compact resolvent.
Of course, the first resolvent equation,
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R(\) - R(\) = (λ, - xJRixjRixj,

then implies that all resolvents of A are compact operators.

LEMMA 3.1. Suppose A has one compact resolvent. Let Q be a
compact subset of {X: re(X) > 0}. Then {R(X):XeΩ} is collectively
compact.

Proof. Since R(X) is a holomorphic function in the right half-
plane, {R(X):XeΩ} is a totally bounded subset of [X, X\. Each
element in this collection is a compact operator. So [2, Corollary 2.7]
implies that {R(X):XeΩ} is collectively compact.

The following is a partial converse of Theorem 2.2.

PROPOSITION 3.2. Suppose A has compact resolvents. Let tQ > 0.
// T(t) is continuous in the uniform operator topology for te [tQi oo),
then T(t0) is a compact operator.

Proof. Since the resolvents are Laplace transforms of {T(t): t ^
0}, we may use the formula based upon fractional integration of
order two [6, page 220] which states that

(" (s - t)T(t)dt = -L ( 1 + I t o ^ ( λ ) Λ , s > 0 .
Jo 2π% Ji-ioo λ 2

For ε > 0, choose N such that

r%f1 + <" 1 | | e i . Λ ( λ ) | | d | λ | < e .
Ji-ioo h+iN \X2

Then

1 f 1 + tJV ^ s

(s - ί)Γ(t)cZt - — \ —R{X)dX
27Γί Ji-<iv λ 2

By Lemmas 3.1 and 2.1, the integral of (eλ8/X2)R(X) over the finite
segment of the vertical line is a compact operator. It follows that
for each s >̂ 0, \ (s — t)T(t)dt is a compact operator.

Jo

Consider the function

F(s) = Γ (s - t)T(t)dt, s ^ 0 .
Jo

Each value of JP is a compact operator. Elementary calculations
show that JP is differentiate in the uniform operator topology. Con-
sequently, each
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F'(s) = [' T(t)dt, S ̂  0 ,
JO

is the limit in the uniform operator topology of a sequence of com-
pact operators. Hence, each Ff(s), s ^ 0, is a compact operator. In
taking derivatives again, we see that for h > 0,

^ sup {|| T(t0 + a)- T(tQ) ||: 0 ^ a ^ h] .
1 CQ

-f T(t)dt - T(t0)
h }t0

If T(t0 + a) is continuous in the uniform operator topology for
a Ξ> 0, then

1 Co
Γ(ί0) = uniform - lim — T(t)dt .

+ h Jί

It follows that T(t0) is a compact operator.

See [6, page 537] for a discussion of the following example.

EXAMPLE 3.3. Consider the semi-group &* of left translations on
the space C0[0, 1] consisting of continuous functions x(u) vanishing
at 1, where the norm \\x\\ = sup {| x(u) |: 0 ^ u ^ 1}. Let [Γ(ί)x](^) —
x(u + t), for 0 ^ ^ ^ max {0, 1 - t}, and 0 for max {0, 1 - ί} g u £ 1.
The infinitesimal generator of S^ is the operator of differentiation
d/(du) with domain

The compact resolvents are given by

[B{X)x]{u) = ί1 U e-λtx(u + ί)dί, λ 6
J

For t ;> 1, T(t) is the compact operator 0 while for t, s < 1,
|| T(t) - T(s)\\ = 2. This can easily be seen by evaluating T(t) -
T(s) at a function x e C0[0, 1] with || x || ^ 1 and x(t) = 1, x(s) = - 1 .
So T(£) is continuous in the uniform operator topology only for
t ^ 1.

Choose a monotonically increasing sequence of positive functions
{yn} s C0[0, 1] such that limΛ ^/w(̂ ) = 1 for each u < 1. For ί < 1,
{T(t)yn} is a sequence of functions having no subsequence which can
converge uniformly. So T(t), t < 1, is not a compact operator.

For λ = σ + ir, let xw(w) = eiτuyn(u) in the definition of
We see that

[i2(λK](0) =
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Since | |cc Λ | | = 1 for each n,

|| R(X) || ^ sup I [R(X)xn](0) | = Γ e~σtdt .
n JO

It follows immediately from the definition of R(X) that the reverse

inequality holds also. Consequently, || R(X) || = 1 e~σtdt. In particular,
Jo

lim,rHoo II i2(α + ΐτ) | | ̂  0. This serves to distinguish this differential
operator from the class of infinitesimal generators which we consider
next.

LEMMA 3.4. Suppose S^ is a semi-group such that the set of
resolvents {R(X): re(X) — 1} corresponding to the vertical line re(X) —
1 is collectively compact. Then {R(X): re(X) ^ 1} is also collectively
compact.

Proof. For each x e X, R(X)x is a holomorphic and bounded
function of λ, re(X) > 1/2. So R(X)x admits Poisson's integral re-
presentation [6, page 229]

for σ > 1, xeX. Since {R(l + iβ): — oo < β < oo} is collectively
compact and the integral of the Poisson kernel over — oo < β < oo
is identically one, Lemma 2.1 implies that {R(X): re(X) > 1} is collec-
tively compact. Taking the union of this set and {R(X): re(X) = 1},
one obtains the desired result.

For xeX and a ; * e Γ ,

<>*, R(σ + iτ)x) = Γ e-ίrί(β"σί<x*, T(t)x))dt .
Jo

This is this Fourier transform of the absolutely summable function
6Γσί<#*, T(t)x), t^O. The convergence of

|| R(σ + iτ) \\ - s u p {| < * * , R(σ + iτ)x) \ : \ \ x ||, || x* \\ ^ 1}

to 0 as I σ \ and | τ | approach infinity can be viewed as a "uniform"
Riemann-Lebesgue lemma.

T H E O R E M 3.5. If &~ = {R(X): re(X) ^ 1} is collectively compact,

then | | j β ( λ ) | | converges to 0 as \X\ approaches oof re(X) ^ 1.

Proof. Throughout the following proof, we assume that re(X) ^ 1.
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Let ε > 0 be given and choose real β so large that 1 + β ^
M/ε, where M is the constant in § 1 which bounds the operator
norms of elements of &L By (2),

+ β) 11 ^ - 7 ^ ^ ^ e
re(λ

λ) + β 1 + β

In view of Lemma 2.4, ^ * is an equicontinuous collection with R(X)
converging to zero as | X | —> oo pointwise on the relatively compact
set ^"XXΌ. Therefore, \\R(\)F\\-+0 as | λ | - > o o uniformly for

Choose JV such that \X\^ N implies that

\\R(X)R(X

The first resolvent equation states that

R(X) - R(X + β) = (λ + β - X)R(X)R(X + /9) .

So, for I X I ̂  iV,

^ || βR(\)R(\ + β)\\ + || 2?(λ + /S) || ^ 2ε .

Note that we have used the fact that &~ contains those re-
solvents jβ(λ) with re(X) arbitrarily large in an essential way.

COROLLARY 3.6. Let Sf he any semi-group whose infinitesimal
generator A has compact resolvents, i.e., each R(X), re(X) > 0, is a
compact operator. Then ^ = {R(X): re(X) ^ 1} is collectively com-
pact if and only if \\ R(X) \\ —> 0 as | λ | —• oo, re(X) ^ 1.

Proof. The assumption that || R(X) (| —> 0 as | λ | -> oo, re(X) ^ 1,
simply implies that R(X) can be extended to a continuous function
on the compactification of the half-plane {λ: re(X) ^ 1}. Consequently,
if A has compact resolvents, J^ is a totally bounded set of com-
pact operators. [2, Corollary 2.7] implies that &~ is collectively
compact.

The converse is simply Theorem 3.5.

The behavior of the holomorphic function R(X) on the vertical
line re(X) = 1 is of fundamental importance. For example, if d(X)
denotes the distance of the complex number X from the spectrum of
A, then [3, page 566]

%τ)

We see that the spectrum of A must be bounded on the right by
the curve
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In particular, it follows from Theorem 3.5 and Lemma 3.4 that
when {R(X): re(X) — 1} is collectively compact, the spectrum of A is
severely restricted.

The usual methods of inverting Fourier transforms can be
typified by the use of (C, 1) means. In [5, page 350], it is shown
that for each t > 0

T{t) - l i m — Γ (l - ! l lV+ < Γ ) ' jβ(l + iτ)dτ .

However, the measures involved no longer satisfy the requirements
of Lemma 2.1. As this situation is typical, we are not able to
prove that if {R(X): re(λ) = 1} is collectively compact, then each
T(t) G S^, t > 0, is a compact operator.
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