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The problem of determining a saturation class has been
considered by Zamanski, Sunouchi and Watari and others.
Zamanski has considered the Cesaro means of order 1 and
Sunouchi and Watari have studied the Riesz means of type
n. The object of the present paper is to extend these results
by considering Norlund means which include the above-men-
tioned results as particular cases.

1. Let {p,} be a sequence of positive constants such that
P,=p,+ o+ +p,—> 0 88 Nn—>co.

A given series >, d, with the sequence of partial sums {S,} is said
to summable (N, p,) to d, provided that

=0 ', =0
.1 L
:‘—an—ksk'_>d y a8 N —— oo,
P, =0
and N, are called the Norlund operators.
Let
(1.2) %ao n ]ﬁ, (@, cos kx + b, sin kz) = 3 A,()
=1 k=0

be the Fourier series associated with a continuous periodic function
f(x), with period 2rx.
We define

x-3) N.(@) = Nu(f32) = == 3} PasAu(®)

and the norm
1) = No@) | = max | f@) — N.(@)] -

If there exists positive nonincreasing function ¢(n) and a class of
functions K, with the following properties:

) 1f(@) — Nu(x)l| = o(g(n)) == f(x) is constant,

dD) [If@) — N.(@)|| = O(¢(n)) =— f(x)e K
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and

(1) f(x)e K = || f(x) — N.(@)|| = O(¢(n)),
then the Norlund operators are saturated with the order ¢(n) and
the class K.

In this paper we prove that the above method of summations is
saturated with the order »,/P, and that the class K consists of all
continuous functions f such that fe Lip 1, where f is the conjugate
function of f. By definition

1
2

1

- tdt,
2T

7@ = o= [[17@ + ) = £@ = O eot

if the integral converges absolutely for all x and if
Sﬂf@ 1) — f@—t)] cot—;-dt
0

is an integrable function.

The problem of determining a saturation class by considering (C,
1) means of the Fourier series of f(x) has been considered by Zamanski
[6]. Sunouchi and Watari [4] have considered the problem by taking
(B, », k) means of the Fourier series. Some of these results were
later extended by Sunouchi [3] and others [2, 5].

2. We shall prove the following theorem.

THEOREM. Let {p,} be a sequence of positive constants satisfying
the following conditions,

2.1) Pok 41 g5 n—> for a fixzed kE=mn,

n

and
(2.2) 3 [Pas = Pacss| = O(p) where [p_,=0].

Then the operators N, are saturated wit}i order p,/P, and the class
of all continuous functions f for which fe Lip 1.

The following lemmas are required for the proof of the theorem.

LEmMma 2.1, If

| f(@) — N@)|| = o[%]

”

then f is a constant.
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Proof. From (1.3) we obtain

1 3 N, () cos roda = L S 3 Pacs 4,(0) cos ra do
T J- T ks P,
= % Eu_f, S” A, (x) cos rx dz
_ P,
P,
Thus,
a, — P, a, = 1 S” f(x) cos rx dox — 1 Sr N, (x) cos rx dx
P.,, T J-7 T J-z
- % S cos 7@ [f(z) — Nau(@)]dz ,
hence
la. - %—a\ <1/@ - M@= | 1-d0= o[—j%—] :
Consequently
(2.3) ar{ Pn + ;)‘f‘ pn—r+1} = o(1),

and since p, >0 for all », we have (p, + +++ + Du_r)/0, =1 for
r=1.

Thus from (2.3) it follows that @, = 0, for each » = 1. Similarly
we can show that b, = 0 for each r = 1. Hence f(z) = 1/2a,, a constant.

LemmaA 2.2. If

— N,@)|| = o[_&]
17@) ~ Nu@)ll = 0| £
and condition (2.1) is satisfied, then f(x)e Lip 1.
Proof. It can be shown without much difficulty that if
— N.(@)|| = o[ﬁ»_— ,
I1f(x) @ P

then

ﬁ“ Pn + - +pn-—-k+1A (x)[l _
k=1 p

K

N+1]’ =01, N=n.

Taking the limit as # — o, and using condition (2.1), we obtain
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(2.4) ] s kAk(x)[l ~k ]” = 0Q1) .

k=1 N-+1

The left hand side of the above equation represents the (C, 1) mean
of the series

;‘; — kA() .
Since —kA,(x) = Bj(x), where 35, By(x) = 3, (b, cos kx — a sin kx)
is the conjugate series of (1.2), then (2.4) is equivalent to

ow(NI < M

which implies that f(x)e Lip 1, [1].
(0x(f) represents the (C, 1) mean of the conjugate series.)

LEMMA 2.3. Assume fe Lip 1. If the sequence {p,) satisfies
condition (2.2), then

|f(@) — N.@)|| = o[%] .

Proof. Since, by definition

cos i — €08 [n + —é—]t
dat

8.7, 0 = L[ 1w, 9 - flo 01
2sin —
2

where S,(F, «) denotes the partial sums of the conjugate series asso-
ciated with f(x), we have

N8, 2) = 5 5, 9Bl 2

1
2
. 1 (e N cos [k + —%]t

> pn—k—zz’ SO[f(x +t)— flx — t)]-————r——dt .

1
P, = sin —t
2

kizopn_k—él;r— g:[f(x + t) — f(z — t)] cot =t dt

1
P,

Since the function f(z) € Lip 1, — f + (1/2)a, is identical to f , therefore
@5)  f@) = N{f, ) = o | [ + 8 - fo ~ DIK.0at,

3

where
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K.¢) = —1—1— 2 Pas COS [k + ;]
P, smEt

Now by partial summation

K,(@) = ——I—Z (Paic = Pu-1-1) Sin (k + 1)t
2P, sin*—

2

1

P,

= P 7 Z (Do — Pu-p—) sin (& + 1)t + o[_%;_] ,

{tz + 0(1)} 2 (P — Pucyr) sin (b + 1)t

by hypothesis. Since f(x) is certainly bounded, the right hand side
of (2.5) becomes

1= (17w + = o = O1L{E, @ucs = pacsc) sin e+ Dtfat

+ O[%] .

Let us write

Fut) = 2= ({8 (Pacs — Pacs)sin (6 + Dufdu .

€n

SinceNf(u)e Lip 1, it 1s an~indeﬁnite integral of a bounded function,
say f'(u). Further, since f(x + t) — f(x — t) = O(f), as ¢t—0, while
for fixed n, F,(t) = O(log (1/t)), we can integrate (2.6) by parts to obtain

+1a + 0+ e - o1Fea + o 2],

noting that the integrated term vanishes at both limits. The absolute
value of this aboxfe expression is now,

@.1) O{S"[Fﬂ(t)]dt} + 0[%] since 7 is bounded .
0 n
Now
Fot) = 235 (pacs = 20y |22 EE Dgy
1 DT gin p
= 35 e = Pkl + 1) S LY gy

However,
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Vmw siny . {O(log 1Y+ 1) if k+1t<1
o/ + 1y if (E+ D=1,

ATRRIP I Vo

Hence

(17,010 = 0 [T 5 19ucs = pecia &+ D log (015 + 1))

n

+

o

lpn k — Pu—i— | L/(k + l)tildt

l"‘ '@NM

i 1/(k+1)
;: | Duse — pn_k_llliso (k + 1) log (1/(k + 1)t)dt

N

1
+ 51/(k+1)(k + 1)¢* dt]} ’
Further,
1/(k4+1)
S log (1/(k + D)t)dt = S 10g< )du = constant
0
and
i 1
SU(H”———————(k n 1)t2dt < M (constant) ,
therefore
) —ol Ll - = _zzl]
17t = 0l 3 1pus = pucseilf = o[ 22
from (2.2).

Thus (2.7) and hence (2.6) is O[p,/P.] .
Consequently from (2.5), we have that

17@) = N.(7, o)l = 0] 2]
which proves the lemma.

The proof of the theorem now follows from Lemmas 2.1, 2.2, and
2.3. )

The authors wish to thank Dr. B. Kuttner of the University of
Birmingham, for his very helpful suggestions.
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