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Let U be an ^-dimensional vector space over an alge-
braically closed field F of characteristic zero, and let Vr U
denote the rth symmetric product space of U. Let T be a
linear transformation on Vr U which sends nonzero decom-
posable elements to nonzero decomposable elements. We
prove the following:

( i ) If n = r + 1 then T is induced by a nonsingular
transformation on T.

(ii) I f 2 < % < r + 1 then either T is induced by a non-
singular transformation on U or T(VrU) = Vr W for some
two dimensional subspace W of U.

The result for n > r + 1 was recently obtained by L. J.
Cummings.

l Preliminaries* Let U be a finite dimensional vector space
over an algebraically closed field F. Let yrU denote the r th sym-
metric product space over U where r 7> 2. Unlese otherwise stated,
the characteristic of F is assumed to be zero or greater than r.

A decomposable subspace of V r U is a subspace consisting of
decomposable elements. Let xlf , xr^ be r — 1 nonzero vectors in U.
Then the set {xx V V xr-i Vu:ue U}, denoted by x1 V V xr-i V U,
is a decomposable subspace of \fr U and is called a ί̂ /pe 1 subspace
of V r ^ Let W be a two dimensional subspace of U. It is shown
in [2] that V r ^ is decomposable and is called a type r subspace of
V r U. If 2/i, , yr-k are vectors in Z7 — W where 1 < k < r, then
the set {yx V V ^r_ fc VWiV V wk: wt e W, i = 1, •••,&}, denoted
by y1 V V yr-k V TΓ V V TF, is also decomposable and is called
a type k subspace of \/rU. In [2] Cummings showed that every
maximal decomposable subspce of \/rUisof type i for some 1 ^ i ^ r.

A linear transformation on \fr U is called a decomposable mapping
if it maps nonzero decomposable elements to nonzero decomposable
elements. In [3] Cummings proved that if dim XJ > r + 1 then every
decomposable mapping T o n \/r U is induced by a nonsingular linear
transformation / on U; that is, T(y, V V yr) = fivd V V
In this paper we consider the case when 3 ^ dim ί7 ^ r + 1.

2 The case when dim Z7 = r + 1* Two type 1 subspaces
and M2 of V r ^ are called adjacent if

Λfx = a?χ V V a?r_2 V y,V U

M2 = a?x V V # r_2 V y2V U
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for some xί9 , xr_2} yl9 y2 where y1 and y2 are linearly independent.
The proof of the following lemma is contained in that of Propo-

sition 4 of [3].

LEMMA 1. The images of two adjacent type 1 sub spaces under
a decomposable mapping are distinct.

THEOREM 1. If dim U = r + 1 then every decomposable mapping
T of \fr U is induced by a nonsingular mapping of U.

Proof. Let M be a type 1 subspace of \frU. Then T(M) is a
decomposable subspace of Vr U Moreover dimM = dim T{M) = r + 1.
Let T(M) §Ξ N where N is a maximal decomposable subspace. If N
is of type k where 1 < k < r, then dim N = k + 1 <r + 1 which is
a contradiction. Hence N is of type 1 or type r. Since dim N =
r + 1, it follows that T(M) = N.

Suppose that some type 1 subspace x1 V V xr-2 V y V U is
mapped onto a type r subspace V r ^ where W is a two dimensional
subspace of U. We shall show that this leads to a contradiction.

Let 9f = {T(MU): ueU.uφϋ] where Jkftt = x1 V V xr~2 VuV U.
We shall show that \/rW is the only type r subspace in ^ Suppose
there is another type r subspace V TΓ* in if. Since V ^ n V ^ ^ O ,
W Π TF* is 1-dimensional. Choose a nonzero vector z in U such that

T(Xi V V xr-2 V y V z) = w,V -" W wr

^>, and TFΓΊ TΓ* Φ (wx) for all

V «r-i V U

where dim
i = l, . . . , r

for some z%

•

in

If

U

T\

then

> - 2 , <i

T(Λf.)

/>

V

n

and

T(Mz)f] \/rW* Φ 0

imply that ^, , zr^ e WΓ\ W* and hence (z,) = - = < r̂_!> = TΓ Π TF;;<.
Since w, V V wr e z, V V zr_i V U, it follows that {w,) = W C) W*
for some ΐ, a contradiction. Hence

for some two dimensional subspace S of U. Note that x1 V V
ί̂ r_2 V 2/ V z G Mz n M"tf. Thus ^ , wr e W Π S. This implies that
(wlf , ^ r > = W = S, a contradiction to Lemma 1 since M* and M"y
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are adjacent type 1 subspaces. This proves that \/rW is the only
type r subspace in ^ .

Since {T(MX): (x) Φ (y), x Φ 0} is an infinite family of type 1
subspaces (Lemma 1) it follows from Proposition 4 of [3] that there
exist vectors ulf , ur_2 such that for any x e U — {0} and (x) Φ (y),

T(MX) = u, V V Ur-z V x' V U

for some xf e U. Since T(MX) n V r W Φ 0 we have x' e W. Let g be
a fixed nonzero vector such that (g) Φ (y). Then for any x e U — {0}
such that <#> Φ (g), (x) Φ (y),

T(x, V V Xr-i V a? V g) = u, V V ^ r - 2 V a ' V Λ

f o r s o m e ^ S i n c e ^ V V ^ r_ 2 V a?' V ^ e ̂  V V ur_2 V g' V U
and (x') Φ (g') we have (gx) — (gf). Therefore

T(Mg) g ^ V V ur_2 V g' V W

U ( ϊ 7 ^ V ••• V xr-2V g V y))

U <Γ(a?1 V ••• V xr-2 V g V g)) .

This is impossible since dim T(Mg) = dim ?7 > 2.
Therefore, Γ maps type 1 subspaces to type 1 subspaces. By

Theorem 2 of [3] T is induced by a nonsingular linear transformation
on U.

3. The case when 3 ^ dim U < r + l In this section we as-
sume that char JP = 0.

LEMMA 2. Lei α?x, •••, ^ δβ k nonzero vectors of U. Let r >

k + 1 ami a?! V V xk V A = ^ V V zr Φ 0 in \/rU where A 6
yr-kU and zte U. Then (x^ — (Zj.) for some j t where j s Φ j t for
distinct s and t.

Proof. Let ulf , un be a basis of U. Let ̂  be the isomorphism
from the symmetric algebra V U over U onto the polynomical algebra
F[ξίf —-ξn] in n indeterminates ξlf •••?„ over JP such that φ(ut) = ξi9

i = 1, •••, n [4, p. 428]. Then

ίΦO ψ(xh)φ(A) = φ{zt) φ(zr) Φ 0 .

Since F[ξlf * , ί j is a Gaussian domain and since φ(xι), --,Φ(%k)>
Φ(zd, #, ^(^r) are linear homogeneous polynomials, it follows that for
each i — 1, , k, (Φ(Xi)) = (Φ(z3 Ji) for some j i where j t Φ j 8 if s Φ t.
This implies that (Xi) = (z^) . Hence the lemma is proved.

The following result is proved in [1, p. 131] under the assumption
that char F = 0.
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LEMMA 3 Vr U is spanned by {ur = u V V u: u e U).
r-tΐmes

Hereafter we will assume that 3 ^ dim U < r + 1 and T is a
decomposable mapping on \/rU. Since every type k subspace has
dimension < r + 1 where 1 ^ fc < r we see that every type r subspace
of Vr U is mapped onto a type r subspace under T.

LEMMA 4. // there are two distinct type r subspaces M and N
ofyrUsuch that MHN^Oand T(M) = T(N), then T{\fr U) = T(M).

Proof. Let M = Vr Sl9 N = \fτ S2 and T(M) = T(N) = VrS where
S, Slf S2 are two dimensional subspaces of U. By hypothesis,

Hence Si Π S2 is one dimensional. Let St = <τ/i, τ/2>, S2 = (yί9 y3).
Consider S3 = (y2, yz). Then

Hence T(\/rS3) n V r S 3 <Γ(i/0, Γ(τ/2

r)>. Since T is a decomposable
mapping and <#J, ̂ /J) is a two dimensional decomposable subspace, it
follows that (T{yr

2\ T(yl)} is two dimensional. Hence Γ(Vr SJ = \/r S
because any two distinct type r subspaces of Vr U have at most one
dimension in common.

Let z — ayι + βy2 + Ίy3 where a, βy 7 are all nonzero scalars.
Consider S4 = (yίf z} = (yl9 βy2 + 7y3). Since

we have T ( V r S j n V r S 3 <Γ(2/Γ), Γ((/5̂ /2 + 7̂ /3)
r)> which is two di-

mensional. Hence Γ(Vr &) — Vr ^ Consequently by Lemma 3,

Now, let we U such that wg (yl9 y2, y3). Let TF = (yl9 w). Con-
sider the type 1 subspace P = yxy \JyΛ V Z7. Since

we have dim (T(P) n V f S ) ^ 3 . Since the maximal dimension of the
intersection of two distinct maximal decomposable subspaces is 2, we
conclude that T(P) g V r S . This shows that

Since (yl, y[~ι V w) is a two dimensional decomposable subspace,
<T(2/ί), TO/Γ'Vw)) is also two dimensional- Hence T(\/rW) = \/rS. By
Lemma 3, we conclude that Γ(Vr U) = Vr S. This completes the proof.
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LEMMA 5. Suppose that for any two distinct type r subspaces
M, N such that Mf)NΦθ, we have T(M) Φ T(N). Then T is in-
duced by a nonsingular transformation on U.

Proof. Let y, ylf y2 be linearly independent vectors. Let S1 —
<V, Vi>, S2 = (y, y2). Then Γ(V r $ ) = V r S[ and Γ(V r S2) = V r S2 for
some two dimentional subspaces S[, S2 of U. By hypothesis \/r S[ Φ
V'SJ Hence

Vr S[ n v r s; - T(Vr £ n Vr s2) = <»">

for some #' G U. Therefore T(yr) = λ?/'r for some λ in F .
Let H = 2/ V V 2/ V U. We claim that T(H) = / V V 2/' V U.

Since T(iiΓ) is a decomposable subspace, it is contained in a maximal
decomposable subspace. If T(H) is contained in a type k subspace
& V V # r- f c V TΓ V V W where 2 g fc < r, then yfregt\/ -- V
gr^k V WV -" V W and hence <&> = <?/'>, ?/'G W. This implies
0i € TF, a contradiction. If T(iϊ) is contained in a type r subspace
VrW, then

dim (V r Si Π H) = 2 = > dim (Γ(V r Si) C)VrW)^2,

dim (V r S2Γ)H) = 2 ==> dim (Γ(V r S2) ΓΊ V r TΓ) δ 2 .

Since Γ(V r Sx) and T(\T S2) are both type r subspaces, it follows
that T(\/r S,) = \/rW = T(V rS 2), a contradiction to our hypothesis.
Hence T(H) is a type 1 subspace of \frU. Since ytreT{H), it
follows that

T ( i J ) = y ' V ••- V y ' V U.

By Lemma 3, let %Γ\ •••, ̂ Γ 1 be a basis of \JrιU. Note that
3 S dim £7 < r + 1 implies that r Ξ> 3. Clearly if i 9̂  i then ^έ and ^7

are linearly independent. Consider any type one subspace D —
zt V V sr_i V i7. Let ^ V V ^r_! = Σ L i λ ^ Γ 1 where \eF and
i = 1, , t. We shall show that T(D) is a type 1 subspace. Suppose
to the contrary that

( i ) T(D) S V r S
or

(ii) T(D) g ^ V V wr_fe V S V V S , 2 ^ K r ,
for some two dimensional subspace S of £7 and some w19 , wr_fe ε U— S.

Let Γ(^, V V ^ V U) = a ί V V ^ V U, i - 1, • , t. Note
that T(xl) = ^ x r for some ^ e ί7, i = 1, , t. For i Φ j , (xl, x°j) is
a two dimensional subspace of V r U implies that T({xϊ, xr^)) = {x\\ x'/}
is a two dimensional subspace of \/rU. Hence x[ and x] are linearly
independent if i Φ j .

Consider case (ii). Choose a vector w of U such that
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w$(w,) u u (wr_k) u s u ( u <4&

Let ueU such that T{xrrι V u) = x[r~ι V w. For each i ^ 2, let
ΓfcΓ1 V w) = a^"1 V Ui. We shall show that (ut) = <w> for i ^ 2.

Since (ccΓf1 V u, xrrι V u) is a decomposable subspace for i >̂ 2,
(a^" 1 V w, α;^"1 V %*> is also a decomposable subspace. By our choice
of w, (x[, w, x'i} is three dimensional. Hence {x[r~x V w, x'ί'1 V u^ is
contained in a type k subspace A for some 1 g & < r. If A is of
type & where 1 ̂  & ̂  r — 2, then we have <cθ = (w) or <ίcj> = (x[)
which is a contradiction. Hence A is of type r — 1. This implies
that <%4> = <^>, i ^ 2.

Let t6i = atw where α, € JP, i ^ 2. Then

= \^[r 1 V W ~f~ Σ ^i^i" * V (fliW)
* = 2

( t \

Λ ,y»'r—1 I V > „ /».'*•—1 1 \ / Λ «
/vj_*(/j_ i x j /v̂ tOjtΛ/̂  I V Ms

t = 2 /

= ft V V gr Φ 0
for some ft e Z7, i = 1, , r. In view of Lemma 2, <ft > = (w) for
some i, 1 <; i ^ r. Since

ft V V ft. e W! V V wr-k V S V V S ,

we have (w) — (^i) for some i or we S. This contradicts our choice
of w. Hence

T(D) S wx V V r̂-A: V S V V S .

Similarly T(D)£\/rS. Therefore T(D) is a type 1 subspace. In
view of Theorem 2 of [3], T is induced by a nonsingular linear
transformation on U.

Combining Lemmas 4 and 5 we have the following main result:

THEOREM 2. Let T:yrU—»\frU be a decomposable mapping.
If 3 5ΞΞ dim 17 < r + 1 £/&ew either T is induced by a nonsingular
transformation on U or T{\fr U) is a type r subspace. In particular,
if T is nonsingular, then T is induced by a nonsingular transfor-
mation on U.

We have so far not been able to determine whether there does
in fact exist a decomposable mapping on Vr U such that its image is
a type r subspace when 3 ̂  dim U < r + 1.
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