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A ring S is a central extension of a subring R if S = RC
and C is the centralizer of R in S, i.e., C ={s €S; sr = rs} for
every r € R. We shall also say that R is centrally embedded in
S.

We have shown that if a ring R is centrally embedded in a
simple artinian ring then R is a prime Ore ring and its quotient
ring Q is the minimal central extension of R which is a simple
artinian ring; furthermore, the centralizer of R can be
characterized. In the present note we extend these results and
show that rings which can be centrally embedded in semi-simple
artinian rings are semi-prime Ore rings with a finite number of
minimal primes and their rings of quotients are the minimal
central extension of this type.

2. The Ring Q,(R). We recall some definitions and re-

sults of [1].

Let R be an associative ring (not necessarily with a unit) and let
L(R) be the set of all (two-sided) ideals A of R with the property:

(A) “VxER,Ax=0=>>x=0".

The set Ly(R) is a filter. That is: closed under finite intersection
and inclusion. We shall also.assume henceforth that R € Ly(R) i.e.
Rx=0=> x=0.

Consider every A € Ly(R) as left R-module and define the ring

Qu(R)= li_rp Homg (A, R), where A ranges over allA € Lo(R). A more

detailed description of Q4(R) is as follows: Let U = U Homg(A, R),
A € Li(R), and in U we define an equivalence relation, addition and
multiplication as follows:

For a: A—R, B: B—R and A, B € L,(R) we put:

i) a+B:ANB—R defined by x(a+B)=xa+xB for
XEANB.

(i) aB: BA—R by: (Xba)apf = 2[b(aa)]B for b €EB, a € A.

(iii) « =B if there exists C C A N B, C € L(R) for which ca =
cB for every c € C.

The ring Q,(R) is the ring of equivalence classes of U with respect
to preceding definitions. Furthermore, R is canonically mapped into
Q«(R) by identifying R with the right multiplications on R.

The center I' = I'(R) of Q4(R) can be characterized as the set of all
¥ € Q4(R) which have a representative vy € Hom (A, R) such that y is in
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fact a bi-R-module homomorphism of A into R. i.e. it satisfies (ax)y =
(ay)x and (xa)y =x(ay)fora€ A.x € R. Alsoy €T if and only if it
commutes with the element of R.

From the results of [1] we quote the following:

If R is semi-simple artinian, then R is both a right and left Ore ring
and its quotient ring is Q«(R) = RI. [1, Theorem 6].

If S = RC is a simple artinian central extension of R then I'C C,
S = RT'QrC and RT = Q(R) is also simple artinian [1. Theorem 18].

The ring RT is semi-simple artinian if and only if the number of
minimal primes P of R is finite, and for each P, (R/P)I'(R/P) is simple
artinian. {1, Corollary 13].

It follows also from the pro??s of f1. Theorem 10] that the number
of simple components of R equals the number of minimal primes of R.

3. The main result. Let S =5,&---PBS, adirect sum of
a finite number of simple rings S; with units e and 1=
€, +é+ --+¢,. The ring § will be said an extension of minimal
length of a subring R if for every i there exist 0 # r € R such that
re; = 0 for all j# i, or equivalently r(1 —¢)=0. This means that for no
subring S(1—€)=SP - -PS-iPSi.PB---PS, the subring R(1—¢)
is isomorphic with R.

LEMMA 1. Let S=RC be a central extension of R. and let
S =8&:--BS, beadirect sum of simple rings S, with unitse. Then:

(1) For every central idempotent €, Se is a central extension of Re ;
and it is also a direct sum of simple rings with a unit.

(2) There exists a direct summand Se of S such that R = Re, and
Se is a central extension of R of minimal length.

Proof. A central idempotent € of S is of the forme =¢,+ - -+ ¢,
and hence Se = S,PS.P---PS,. Furthermore S = RC yields that
Se = (RC)e =(Re) (Ce) and the elements of Ce commute with the
elements of Ce, which readily implies that Se is a central extension of
Re.

To prove the second part, we consider the set of all central
idempotents ¢ of S with the property: “re =0, r€R 2> r=
0”. Clearly for such €, R = Re by corresponding: r — re. The set of
these idempotents is not empty since the unit 1 has this property. Each
of the central idempotent € has the forme =€;,+ €, L,<i,<:--<
i, So choose e of this set with minimal p. Then Se is a central
extension of Re of minimal length, since the minimality of p implies that
for any 1 =\ = p, there exists r# 0 such that r(e —¢,) = 0.

The preceding lemma shows that if a ring R has a central extension
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S of the type described above, then replacing S by a direct summand
we get a central extension of minimal length of a ring isomorphic with
R. We can, therefore. restrict ourselves to the study of central
extension of minimal length. Our results is the following.

THEOREM A. Let S = RC be a central extension of R of minimal
length then R is semi-prime and we can embed I' C C. Furthermore, RT
is also a central extension of R of the same type with the same number of
components.

THEOREM B. Let S = RC be a semi-simple artinian ring and a
central extension of R of minimal length then R = Q4(R) is also
semi-simple artinian and S = RT'R),C.

In view of the results quoted from [1] we deduce that:

CoroLLARY C. IfR has a central extension which is a semi-simple
artinian ring, then R is a semi-prime (right and left) Ore ring with a finite
number of minimal primes. Its ring of quotient is Q\(R) and it is a
minimal semi-simple artinian central extension of R.

4. Proofs. Before proceeding with the proof we need a few
lemmas.

LEMMA 2. Let S = RC be a central extension of R of minimal
length, then an ideal A in R belongs to L(R) if and only if AC = S.

Indeed, let S =S, P --PS,, S; simple with a unit . If AC=S
and Ax =0 for some x €ER, then Sx = (AC)x =(Ax)C =0but S has a
unit and so x =0, i.e. A € Li(R). Conversely, it suffices to show that
AC N S, #0, since then AC N S; is a nonzero ideal in the simple ring
implies that §; = AC NS, This in turn yields that ACDS; and.
therefore ACD S/ P---6pS, =8. To prove that AC N S;# (), we note
that if ACNS; =0 then Ae, CAS, CARC NS, CACNS =0. Let
P={r.re =0} and Q ={rER, r(1—¢)=0}. Since S is of minimal
length it follows that PNQ =0, Q#0 and PDA. Thus AQC
PN Q =0 which contradicts the assumption that A € L(R) (i.e.. A
satisfies (A) of §2).

We can follow now the proofs of [1] Lemma 14 and show:

LeEMMA 3. If Sis as above then there is an embedding of T into the
center of S which contains C.

Proof. Let a: A— R, A € Ly(R) be a representative of an ele-
ment & €I'. First we show that there is a unique element ¢, € C
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depending on & (and not on the representative « ) such that aa = ac, for
every a € A. Next we prove that the correspondence: @ — 8, is the
required embedding. The proof follows the proof of [1] Lemma 14.

Since A € L|(R), it follows by Lemma 2 that AC =S and hence
1 =3ac, forsome g, €A and ¢; EC. Set ¢, =X(a,a)c.. Sincea €1,
a is a bi-R hence for every a € A:

aa = (aa)l = 2(aa)a;c, = 2(aa,)ac, = a2(aa )¢ = ac,.

To prove that ¢, € C, we observe that for every a € A and
x €R:(ax)c, =(ax)a =(aa)x = ac,x. Hence, a(xc, —c,x) =
0. Consequently, S(xc, — c,x) =(CA) (xc, —c,x)=0 and since 1 €S
it follows that xc, — ¢,x =0 for every x €R, i.e. ¢, €C.

The element ¢, which belongs to C, actually commutes also with
the elements of R and hence belongs to the center of S. Indeed, let
¢ € C and a € A then since C centralizes A we have (aa)c = c(aa) as
ae € R. Also aa = ac, = c,a and, therefore:

¢, (ac)=(ac,)c =(aa)c = c(aa) = (ca)c, = (ac)c,.

That is, ¢, commutes with all the elements of AC = S, and this means
that ¢, is in the center of S.

Next we show that ¢, depends only on @ € F: let 8: B— R be
another representative of @ then « =8 on some D C A N B which
belongs to L(R). Hence for d € D: dc, = da = dB = dc,. which im-
plies that D(c, —c¢z) =0 and therefore S(c, —¢z) =(CD) (¢, — ) =0
which yields ¢, — ¢, = 0.

Finally c¢,.s = ¢, + €5, Cop = C,Cp since for some ideals in L(R) we
have the following relations for their elements:

XCyip = X(a + B)=xa +xB = xc, + xcy = x(c, +¢p)
Yeog = Y(aB) = (ya)B = (ya)cz = y(c.cp)

and as in preceding proofs this implies that ¢,.;, = ¢, + ¢; and ¢.; = ¢,Cp.
We, henceforth, identify I' with its image in C and thus we may
assume that I' C C.

LEMMA 4. Let S = RC =85,F---BS.. S, simple with unit €. be a
central extension of R of minimal type, then €; €T.

Forlet P={rER, re, =0tand Q ={r &R, r(1—¢)=0}. Since S
of minimal length, P#0, Q#0 and PN Q —0. We first assert that
P+ Q€€ L(R) and, indeed, (QC)¢ =(Q¢)C =QC =QRC =QS =
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Q#0andso QC CS; but QC is and ideal in S and therefore, also in S,
which yields QC = §; since S; is simple. A similar proof which uses
the fact that Pe; #0 for j#i shows that (PC)e = S;. Hence

(P+Q)C=3XP+Q)C, =25.=S

and thus P+ Q & L(R) by Lemma 1. Consider now the map e:
P+Q—Q given by (p+q)e=gq. Clearly, this is a bi-R-
homomorphism, hence @ €I and so there exists c¢. € C such that
(p +q)c. = q. Consequently, (p +q)c. =q =qe, =(p + q)e. By the
uniqueness of ¢, it follows that c. = ¢

We are now in position to prove the main theorems.

R is semi-prime, for if A*=0then (AC)*=1in S, but S is semi-
prime and so AC =0 which implies that A = 0.

Let S = RC =S, - -DS, be a central extension of R of minimal
length, with ¢ the units of S, Put P ={r €R, re, = 0}, and consider R
as a subring of Q,(R). Then we readily have, since €, €' C Q(R) that
P =R NQyR) (1—¢€,). Furthermore, P is a prime ideal: indeed let
AB C P with A, B ideals in R containing P, then since BZ P, Be, # 0
and, therefore, (BC)e; is a nonzero ideal in S, which implies that
BCe,=S,. Thus:

0=(CP)e, D(CAB)e,= A(CB)e, = AS..

This yields that Ae,=0and so A C P. We can now apply [1] Theorem
8, which in our case means that QR/P)= Q4(R)e, and T'(R/P)=
I'(R)e, =T€,.

Denote, R, = Re, (which isomorphic with R/P) and ¢, = ce, then
RCe, = R,C,= S, which shows that R, is a prime ring with a central
extension which is a simple ring S, with a unit. It follows, therefore, by
[1] Theorem 18 that R,I'(R,) is simple with a unit. Now I'(R)) =
I'(R/P) =Te, by the preceding result. So R,(I'¢,) is simple with a unit
and note also that R,I'e, = (RI')e;,. The same follows for all the other
idempotents € and so we get that RI'= RIl'e,+ RI'e;+ --- + Rl¢, is a
direct sum of simple rings with units, which completes the proof of
Theorem A.

The proof of Theorem B follows the same lines by applying the
second part of [1] Theorem 18 which was quoted in the present note
(82). Namely, if S is semi-simple artinian then each summand S; is
simple artinian and hence, by [1] Theorem 18 R,I", = (Re,) (T'e)) = (RT)e,
is simple artinian. Furthermore, we also have R,I'y= Q(R/P)=
Qu(R)e, by (iii) of [1] Theorem B. Thus, Q«(R)=32Q«R)e; = ZRT; =
RT.
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Finally, (RC)¢; = RT & Ce; for every i, from which it follows
that:

RC =3RCe; =SRT; @ Ce =RT ® C
r, r

since I' = 3I'¢; and the elements ¢; belong to the center of § = RC. The
last isomorphism is given by the mappings raQc — 2(ra)e;Qr.ce;;
ra; Xr.ce; — ra, R Ce;.

Corollary C follows now immediately by Theorem 6 and Corollary
13 of [1].

We finish with an immediate corollary of the fact that I' C Cents S,
and Cent SCC:

CoroLLARY D. If RC is a central embedding of R in a direct sum
of simple rings of minimal length, then so is R(Cent C).
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