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Let P, be the collection of finite-valued functions defined on
the nonnegative orthant, E -, of euclidean n’-space such that for
p € P, it follows that p: E,:— E| and in addition

(a) p is continuous,
() plax)=a"p(x),a =0,
© p(x+y)zpx)+p(y).

1t follows readily that P, is closed with respect to addition and
nonnegative scalar multiplication. Therefore, P, is a convex
cone, whose vertex is the zero function, in the linear space of real
functions defined on E;:. The purpose of this paper is to
investigate the extremal elements of P..

1. Introduction. One well known member of P, is the
permanent function. Recently functions that generalize the permanent
function have been studied by Rothaus [9] and new representations for
the permanent function have been sought (for example see [2] by
Marcus and Newman). The interest in determining the extremal
elements of P, comes from the fact that under certain circumstances it
is possible to give an integral representation for any p € P, in terms of
the extremal elements of P, [1] (examples of similar studies may be
found in papers by McLachlan [4], [5], [6] and Rakestraw [7]). In this
paper it is shown that for a € E;»\0, the functions p,(x)=
sup{A": x = Aa} are extremal elements of P,. Replacing condition (b)
by

(b) p(ax)=ap(x), a =0,

gives the collection of monotone concave gauges, denoted by P},
defined on E}-[8]. If foralli=1,---, n, A € P], then the function A
defined as A (x) =111, A;(x) is an element of P,. If S, denotes all those
p € P, which are finite nonnegative linear combination of functions of
this type, then clearly S, is a subcone of P, and S, contains the
permanent function. It is shown here that for a function p € S, to be
an extremal element of P,, then p must be of the form p(x) =[A (x)]",
where A (x) is an extremal element of P..
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In the material to follow define [p:a]l={x:p(x)=a}, where
p € P,. It follows that a[p: 1]=[p: «"] forall «a =0. Also, use will
be made of the fact that for p € P, or p € P, then x =y (or x >y)
implies that p(x)=p(y) (or p(x)>p(y)). Further if x €int E;:> and
p # 0, then p(x)>0.

2. Extremal elements of P, The first theorem of this
section gives some of the extremal elements of P,. It is conjectured
that this set includes all the extremal elements of P,. The following
lemmas will be needed.

Lemma 1.1. If p, q € P,. Define
(p rq) (x) = min{p (x), g (x)}.
Then p rq € P,.

Proof. 1t follows readily from the definitions that p Aq is continu-
ous and homogeneous. Also,
(pAq)(x +y)=min{p(x +y),q(x + y)}
= min{p(x) +p(y), q(x) +q(y)}
=z min{p (x), q(x)}+ min{p(y), q(y)}
=(rq)(x)+(prq)(y).

For all k=1,---.n% let pi(x)=x{, x =(x,,---,x.2) € E}>. Then
p« € P,.  With this in mind consider the following:

Lemma 1.2. Let a =(a,,-:-,a.2) € E;>\{0}. Define p, as fol-
lows:
p.(x)=sup{A": x = Aa,A = 0}.

Then p, € P,.
Proof. Without loss of generality, assume the nonzero coordi-
nates of a are a,, -, a, k =n® Let
(1. pC) = (e poneen ) .
a’ ay

Lemma 1.1 implies that p € P,. Now for any given x € E;: suppose
that
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n

X
at’

p(x)=

1=1=k Then it follows readily that for each i

X
xza
a

with equality when i = 1. Further there does not exist A > x,/a, such
that x = Aa since otherwise

X
X > )\a,\> zlia, = X.
!

Hence, p.(x) = p(x) for every x € E}:, which implies that p, = p.

Notice that if a; is a nonzero coordinate of a and x € E - such that
x; =0, then x = \a implies that A =0. Thus, p.(x)=0. Also, if
a = e, where ¢ is that vector having all zero coordinates except the kth
coordinate which is 1, then p, = p..

In general, if p € P, the set [p: 1] is difficult to characterize. For
example a complete characterization of the set [p: n!/n"] (and hence
[p: 1]) where p is the permanent function is not known [3]. However,
if p=p, for some a#0, then a characterization is possible. Let
a =(a,. - -.a:)EE} a#0. Forevery i €{1,---n?, define

R(a,')={(X|,"',x,'_|, aivxi+]a“.’xn2): x]' zaj for j# i}-
LEmMA 1.3. If a € E;x\{0}, then
[p.: 11= U{R(a:): a; # 0}.

Proof. Let y € R(a;), where a;#0. Clearly, y=a. Notice
there does not exist A >1 such that y = Aa, for otherwise a; = Ag; >
a. Hence, by definition p,(y)=1. This implies that

U {R(a;): a;#0}C[p,: 1].

Now suppose y €[p,: 1]. Considering (1.1), there exists k €
{1, -, n? such that a, >0 and (y./a,)" = 1. This implies that y; = a},
which implies that y, = a,. For all other i €{1, - - -, n’} such that a; >0,
(vi/a;)" = 1and hence y; = a;. It follows that y € R(a,) and the proof is
complete.

Using this result it is possible to show that p, = p, if and only if
a = b. Next using Lemma 1.3, p, is shown to be an extremal element of
P,
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THEOREM 1.1. The function p, is an extremal element of P,.

Proof. Suppose p, =f+g. Let y €R(a;), where a;7#0 and i €
{1,---,n’, then

P,(a)=P,(y)=f(y)+g(y)=f(a)+g(a)=P.a).

This implies f(y) = f(a) and g(y) = g(a), since f(y)=f(a) and g(y) =
g(a). Also, p,(a)=f(a)+g(a) implies p.(a)=f(a) and p.(a)=
g(a). Therefore, there exists @« =0 and 8 =0 such that ap,(a) = f(a)
and Bp.(a)=g(a).

Again, without loss of generality, suppose the nonzero coordinates
of a are a,-*-,a,. Let x € E}:such that x,>0,:---,x, >0. Then for
every i €{1,---,k} there exists A, >0 such that a; =Ax,. Let A =
max{A;: i €{1,---,k}}. Notice there exists a j €{l,---,k} such that
A =A. Hence, Ax,=a with equality when i=j Clearly, if
PE{l, -, n’\{1,-- -k}, then Ax; Z a.. Therefore, Ax € R(q;). Setting
y = Ax, it follows that

f00 = f(3v) =35 )

=A1n f(a)=iapa(a)

- L = ap,(+
=1 apa(y)-apa<A y)

= ap,(X).

Clearly, if x € E}> such that x; =0 for some i €{1,---,k}, then 0=
p.(x). This implies f(x)=0, which in turn implies that f(x)=
ap,(x). Ineither case f(x) = ap,(x). Hence, f = ap,. Likewise, g =
Bp.. Therefore, p, is an extremal element of P,.

By a somewhat similar proof it can be shown that the function p, is
minimal in the set of all elements of P, which agree with p,(a) at
a. Also, for a >0 the sets [p,: 1] have the property that «[p,: 1]=
[Pa: @"]= [Pt 1]

Recall that S, C P, is the set of finite nonnegative linear combina-
tions of products of n functions of P,. For a € E}-\{0}, let q.(x) =
sup{A:x = Aa}. Then, as in the case for P,, q, is an extremal element
of P,. Also, p.(x)=[q.(x)]", which implies that p, € S,. Since S, isa
subcone of P, then p, is an extremal element of S,. It is conjectured
that {p.: a € E;;{0}} represents all the extremal elements of S,.
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LEmMMA 1.4. If p#0 and p(x) =11}, Ai(x), where A, EP,, is an
extremal element of S,, then each A, is an extremal element of P,.

Proof. Suppose there exists a k =1, ---,n such that A, is not
extremal in P). Then there exists f,g € P, such that A, =f+g and
neither f or g is proportional to A,. Hence,

p(x)= H AX) = Ax) - (F) +g(x) - -+ An(x)
=Ax) - f(x) - Au(x)+HAXx) - g(x) - An(x).

Since p is extremal in S,, there exists « =20 and B =0 such that
Ax)- - f(x) - Au(x) = ap(x) and Ax)---g(x) -+ A,(x)=
Bp(x). Let x&€intE;.. Then p(x)>0. Also, it can be shown that
each A;(x)>0, f(x)>0 and g(x)>0. Therefore,

aAi(x) - A(x) - Ag(x) = ap(x) = A(x) - f(x) - An(x),

which implies that aA,(x) = f(x), for all x €int E}-. It follows from
continuity that aA,(x)=f(x) for all x&€Ej.. This is a
contradiction. Therefore, A, is an extremal element of P/ for each k.
In any convex cone, if the sum of two nonzero elements is an
extremal element, then the two elements are proportional. Hence, the
only possible extremal elements of S, are those elements of the form

(1.2) p(x)=[] Al®x),

where /(i) is a nonnegative integer and 2I/(i) = n. Moreover, Lemma
1.4 implies that the A; must be extremal elements of P,. The Lemma
1.4 and these comments give conditions that are necessary when p is an
extremal element in S,. These conditions are not sufficient as will be
seen in Proposition 1.1.

Attention will now be given to considering the extremal elements of
P,

THEOREM 1.2. Let p be defined as in (1.2). Let k be the number of
i for which [(i)>0. Ifk > 1, thenp is not an extremal element of P,.

Proof. Assume

p(x)= 1] Al(x),
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where each [(i) is a positive integer, =‘_,/(i) = n and the A; are distinct
(pairwise nonproportional) extremal elements of P,. Foreachi €{1,2}
define

Ai(x)
_ Alx) N -
f.-(x)={A.(x)+Az(x)p(x)’ A(x)+Axx)>0
0 Adx) + Ayx) =0.
It follows easily that p = f, + f,. It will now be shown that each f; € P,.

n-Homogeneity: Leta=0and x € E;:.. If a =0, then A ,(ax) =
A)ax)=0 and hence f(ax)=0=a"fi(x). Suppose a>0. If 0=
Afax)+ Afax) = a(A,(x)+ Ayxx)), then Ai(x)+ A,(x) =0 and hence
filax) = a"fi(x). Suppose a >0 and

a(A(x)+ Ayx)) = A(ax) + Ayax) >0,
then A,(x)+ A,(x)>0. Therefore,

A, (ax) (ax)=a" Ai(x)
Adax)+ Adan) P T Y T O+ A0

filax) = p(x)=a"f(x).

So for all @ =0 and x € E};, fi(ax) = a"f(x).
Superadditivity: Let x,y € E .
Case I. If A(x +y)+ A, (x+y)=0, then
0=A(x+y)+tA(x+y)=A(x)+A(y)+Ax(x)+Axy)=0

which implies that A,(x)+ A,(x) =0and A,(y)+ Axy)=0. Therefore,
filx +y)=fi(x)+fi(y).

Case II. Suppose that A((x +y)+ A (x +y)>0, A,(x)+ A(x) =
0 and A\(y)+Ax(y)=0. Clearly, fi(x +y)=fi(x)+ fi(y).

Case III. Suppose A|(x+y)+A,(x+y)>0, A(x)+Ax(x)>0
and A,(y)+ A,(y)=0. Then

_ Ai(x +y)
fi(x+)’)-A](x+y)+A2(x+y)P(x+)’),

= Ai(x)
=0+ a0 P
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and fi(y)=0. It must be shown that

Alx +y) Ai(x)
A+ 0+ AP P ETO T Am P

This is true if and only if

(Ai(x) + Ax(x)) Ai(x +y) ﬁ Ail(x +y)

(1.3) k
=(Ai(x +y)+ Axx +y) Ax) [T AJ9(x).

It suffices to show that each term on the right hand side of (1.3) is less

than or equal to the corresponding term on the left hand side of
(1.3). Now form =1 (or m =2)

An()Ax +y) [T AL+ y)
=A,(x +y)A(x+y) (A, ()A ™ '(x+y) - AL®x + y))

= An(x + y)Ai(x) ﬁ AJx).

It follows that (1.3) is true.

Case IV. Suppose A|(x+y)+A,(x+y)>0, A,(x)+A,(x)>0
and A, (y)+ A,(y)>0. Then

— Aix +y)
) = ) A Ty PO

_ Ai(x)
f«(x)—mp(x),

and

_ Ai(y)
fiy)= A0) + ALY (y)p(y)

It must be shown that

Ai(x +y) A
@) AT y)F AL +y) UA’ (x+y)

> Ai(x) 1) .___._XhA( ) 14)
(®) A<x>+A(x)nA “‘”A(y)ﬂ\(y)“"‘ -
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This will be true if and only if

© Al +)A@ AL AL+ A ] ARG +y)
@ ZA@AE) +AG)AG+3)+ A+ [T APE)
©  + AL AL+ AL A+ )+ Adx + ) [T AP0).

Since

(® Ai(x +y) (Ai(x) + Axx)) (Ai(y) + Axy)) I:I AP(x +y)

A
(g) Z Ai(x)(A(x)+ AAx)N(A(y)+ AxV)) n Allx +y)
=l

(h) +Ai(y) (Ai(x) + Axx)) (Ai(y) + Ax(y)) l:! A(x +y),

it is sufficient to show that (g) = (d) and (h) =(e). An argument similar
to the one in Case III shows that each term of (g) or (h) is greater than or
equal to the corresponding term of (d) or (e). Thus, (c)=(d)+ (e) and
hence (a) = (b). Therefore, each f; is superadditive.

Continuity: Let x € E}:and {y;} CE}:such that y;—x. Suppose
A(x)+ Ay(x) >0, then without loss of generality it may be assumed tha
A(y;))+ Axy;) >0 for each j. In this case

Ai(x)

- Ai(y) -
f'(y’)_—~L—~p(y’)—)A,(x)+A2(x)p(x).—f'(x)

Ai(y) + AAy)

Suppose that A(x)+ A,(x) =0, then p(x)=f(x)=0. If there exists
m €{1,2} such that A, (y)=0, fi(y))=0=fi(x). Suppose A,(y)>0
for m =1,2. Since each A/.“(y;)—0 and the expression

Ai(y[)
A(y) + Axy;)

is obviously bounded by 1, then f(y;)—0. Therefore, f is
continuous. Hence, each f; € P,.

It remains to be shown that the functions f; form a nonproportional
decomposition of p. Suppose fi(x)=ap(x), for all x € E;.. Let
x € E;:. There exists a sequence {y;} Cint E ;- such that y, > x. Since
y; €int Ez, then A(y;) >0, A)(y;)>0 and p(y;)>0. Hence,
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— f(y) = — A .
ap (y;) = fi(y;) mmm

which implies that
A;(y;) = a(A(y;) + Axy)).

Since Ai(y)— Ai(x) and a(A(y)+ Axy)) = a(A(x)+ Axx)), then
Ai(x)=a(A(x)+ Ayxx)). Since A, and A, are pairwise nonpropor-
tional extremal elements in P,, this is a contradiction. Therefore, there
does not exists « =0 such that f, = ap. Hence, the decomposition is
nonproportional, which implies that p is not an extremal element of P,.

Two questions immediately arise. First, is f; € S,? Secondly, is
every extremal element of P; of the form q,, where a € E;-\{0}? If
both answers are affirmative, then every extremal el¢ment of S, is of the
form p,, where a € E;-\\0. 1t is entirely possible that the functions f
do not belong to S,.

The following is an example of a subcone of P, that has as extremal
elements some functions that are not extremal in P,.

ExaMpLE 1.1. Let Q, beé the’set' of all p: E}>— E7 such that

nZ

p(x)= 2 Qi1 inXit *° Xin

il,in=1

where il= ---=in, a;,..;, =0and x = (x,, -+, x,2). Thus, Q, is the set
of nonnegative superadditive n-forms. Clearly, Q, is a subcone of
S, CP,. Therefore, the functions p,,- - -, p,> are extremal elements of

Q.. However, these are not all of the extremal elements of Q,. Infact
without much difficulty it can be shown that the extremal elements of Q,
are the positive scalar multiples of functions of the form

P(x)=xk1"'ka

where kj €{1,---,n’}, forj=1,---,n and k1= ---=kn.
Now for every x = (x," -+, X,2) & E}:'define p(x) as

(1.4) px)=xi®- x4,

where (i) is a nonnegative integer and X7,/(i) =n. Notice that
[(i)>0 for at most n valuesof i =1,---,n* Clearly,p € Q,. Infact
the preceding example shows that p is an extremal element of Q,. If k
is the number of i €{1, - - - n?} for which I(i) >0 and k > 1, Theorem 1.2
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says that p is not an extremal element of P,. The following proposition
shows that p is not an extremal element of S,.

ProPOSITION 1.1. Let p be defined as in (1.4). Ifk > 1, then p is
not an extremal element of S,.

Proof. Without loss of generality assume
1(k)
k

p(x) =x11(1)x£(2). e X

where each [(k)>0. As seen in the proof of Theorem 1.2, p =f, +f,
where

Xi 1(1) 1(k)
—x -oox
f.-(x)={",+x2 P, xdn=0
0 N x|+x2=0.

Consider f,. Notice that

XX -
fl(x){xl'li_-zxZXIl(l)Xé(Z) l...x}((k)’ XI+xz>0
0 s Xy + X, = 0.
Let ‘
XiXs , X;+x,>0
gx)= {x, +x;
0 , Xi + X, = 0
Then fi(x) = g(x) x{Px;®"---xi®. Since the objective is to show that

fi € S,, it remains to be shown that g € P,. As in Theorem 1.2 g is
continuous and homogeneous of degree 1. To show supperadditively
let x,y €EE;:.. If x,+x,=0 or y,+y,=0, then it follows readily that
g(x+y)=g(x)+g(y). Suppose x;+x,>0 and y,+y,>0. In this
case it must be shown that

Gt y)Xaty) o XiXs | YiYs
Xityitx+y, T xitx, yity,’

which is equivalent to proving that
X+ y) X+ y) (i +x) (i + ) — [(0x) (X + yi+ x4+ y,) (v + )
+ yiyAx;+ y, +x2+ y) (x+ x,)] = 0.

By direct calculation the left hand side of the above inequality is equal
to (x,y.—x,y¥,)>. The computation is tedious but straightforward.
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Hence, g is superadditive and f, € S,. Likewise, f,€ S,. Hence, p is
not an extremal element of S,.

Actually, it can be shown that if p is defined as in (1.2) and if at
least two of the A; are additive, then p is not an extremal element of S,.
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