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Let Y be a smooth, quasi-projective scheme of finite type
over an algebraically closed field of characteristic zero. Let X
be the quotient of Y by a finite group of
automorphisms. Assume that the branch locus of Y over X is
of codimension at least 3. In this note, it is shown that X is
locally rigid in the following sense: the singular locus of X is
stratified and, given a point on a stratum, it is shown that there
exists a locally algebraic transverse section to the stratum at the
point which is rigid. This result is then applied to the coarse
moduli scheme for curves of genus g, where g > 4 (in character-
istic zero).

1. Stratifying quotient schemes. Let k be an algebrai-
cally closed field. Let V' be a smooth, irreducible quasi-projective
algebraic k-scheme. By a quotient scheme, we mean a scheme V =
V'|G, where G is a finite group of automorphisms of V'. In [3], Popp
defines a stratification of such schemes.

Given a point P€ V and a point P' € V' lying over P, one may
define the inertia group of P’:

I(P)={0c €G|ox = xmod M, for all x €Oy ,}.

If P"€ V' is another point lying over P, then I(P’) and I(P") are
conjugate subgroups of G.

Let Z, denote the closed subscheme of Spec (0») which is ramified
in the covering f : V' — V and let Z,. be the inverse image of Z, in Spec
(0»). Denote by Z},---,Z' those irreducible components of Z, of
dimension n — 1 (where n =dim V). Let H,,:- -, H, denote the inertia
groups of the generic points of Zi,---, Z! respectively and let H(P’')
denote the subgroup of I(P') generated by the H,, i =1,2,---,s. (If
s =0, put H(P')=(1).) Let

I(P) = 1(P)/H(P")

and call this the small inertia group of P’. Under the assumption that
V' is smooth, Popp shows that I(P’) is independent of the cover; i.e.,
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for any smooth cover V"— V, if P"€ V" is a point lying over P, then
I(P"y=1(P’). Thus, we may write I(P) and speak of the small inertia
group of P.

Let W be an irreducible subscheme of V and suppose P €
W. Then one says that V is equisingular at P along W if the following
two conditions hold:

(1) P is a smooth point of W

(2) Suppose P’ is a point lying over P and W' is the irreducible
component of f7'(W) containing P'. Then the canonical homomorph-
ism I(W')— I(P") is a (surjective) isomorphism.

Let

Eqs(V/W)={P &€ W|V is equisingular at P along W} .

Popp shows, under the assumption that k is of characteristic 0, that
this notion of equisingularity satisfies the axioms which any good notion
should (cf. [6]).

In particular, given Q € V, let M, denote the family of closed,
irreducible subschemes W of V such that Q € Eqs(V/W). Then the
family {Eqs (V/W)|W € M,}, for fixed Q, has a greatest element called
the stratum through Q.

Another important property is that if E is a stratum and P € E, then
there exists a neighborhood U of P in V and a minimal biholomorphic
embedding ¢ : U — C* (where e =dim .,/ M}) such that ¢(U) is to-
pologically isomorphic to the direct product of y(UNE)= ¢ and a
Jocally algebraic transverse section to € at (P) (see [3] for details).

The above straification, in characteristic 0, is really quite neat: if E
is a stratum and P € E, then E = {Q| Q is analytically isomorphic to P}.

2. The local rigidity of certain quotient schemes.

DerFINITION. Let V be a quotient scheme in characteristic
0. Stratify V asin §1. Then we will say V is locally rigid if given a
point P on a stratum E, then there is a locally algebraic transverse
section to E at P which is rigid.

PrROPOSITION 1. Let a finite group I act by holomorphic au-
tomorphisms of C™, leaving the origin fixed. If I acts freely outside
some I-invariant complex subspace W' (through the origin) of codimen -
sion =3, then X =C" /I is rigid.

Proof. As is noted in [5], this is a valid generalization of Theorem
3 of [4].
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THEOREM 1. Suppose k is an algebraically closed field of charac-
teristic 0. Let Y be a smooth, quasi-projective algebraic k-scheme and
let G be a finite group of automorphisms of Y. Let X =Y/|G. If the
branch locus of Y over X is of codimension at least 3, then X is locally
rigid.

Proof. Suppose x is a point of X. Let I denote the inertia group
of x. Note that since there is no ramification in codimension 1, we have
I =1 In aneighborhood of x, we can linearize the action of I (cf. [1],
[3]) so that X at x is locally analytically isomorphic to C"/I at the point
Q which is the image of the origin under the canonical map C* — C"/I.

Choose coordinates z,,---,z, in C" such that z,,---,z span the
fixed space of I (we may do this since the fixed space is linear). Then

C"/I =Spec(Clzi, -, 2] QClz 1, - -, 2,1").
The stratum on which Q lies is
E = Spec(Clz\,---,2.])
and the transverse section we desire is
S = Spec(Clz,+1," "+, z.1").

Locally at x, the space X is isomorphic to E XS, not just
topologically, but analytically as well. It follows from this and our
hypotheses that the branch locus of the map Spec (C[z,+), -, z,])— S
has codimension at least 3. Hence, applying Proposition 1, we may
conclude that S is rigid.

We may apply this theorem to M,, the coarse moduli scheme for
curves of genus g, in characteristic zero. M, is the quotient of the
smooth, higher-level moduli scheme J,,, for n sufficiently large, by the
group GL(Q2g,Z/n) [2]. In [2], Popp computes the dimension of
ramification points of the map J,, — M,. An inspection of his compu-
tations shows that, for g >4, the branch locus of this map has
codimension at least 3. Applying our theorem then yields:

PROPOSITION 2. M,, the coarse moduli scheme for curves of genus
g in characteristic 0, is locally rigid if g > 4.
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