Pacific Journal of Mathematics

THE LOCAL RIGIDITY OF THE MODULI SCHEME FOR CURVES

ROBERT F. LAX

Vol. 56, No. 1 November 1975

THE LOCAL RIGIDITY OF THE MODULI SCHEME FOR CURVES

R. F. Lax

Let Y be a smooth, quasi-projective scheme of finite type over an algebraically closed field of characteristic zero. Let Xquotient of Y by a finite automorphisms. Assume that the branch locus of Y over X is of codimension at least 3. In this note, it is shown that X is locally rigid in the following sense: the singular locus of X is stratified and, given a point on a stratum, it is shown that there exists a locally algebraic transverse section to the stratum at the point which is rigid. This result is then applied to the coarse moduli scheme for curves of genus g, where g > 4 (in characteristic zero).

1. Stratifying quotient schemes. Let k be an algebraically closed field. Let V' be a smooth, irreducible quasi-projective algebraic k-scheme. By a quotient scheme, we mean a scheme V = V'/G, where G is a finite group of automorphisms of V'. In [3], Popp defines a stratification of such schemes.

Given a point $P \in V$ and a point $P' \in V'$ lying over P, one may define the inertia group of P':

$$I(P') = \{ \sigma \in G \mid \sigma x \equiv x \mod \mathcal{M}_{P'}, \text{ for all } x \in \mathcal{O}_{V',P'} \}.$$

If $P'' \in V'$ is another point lying over P, then I(P') and I(P'') are conjugate subgroups of G.

Let Z_P denote the closed subscheme of Spec (\mathcal{O}_P) which is ramified in the covering $f: V' \to V$ and let $Z_{P'}$ be the inverse image of Z_P in Spec $(\mathcal{O}_{P'})$. Denote by Z'_1, \dots, Z'_s those irreducible components of Z_P of dimension n-1 (where $n=\dim V$). Let H_1, \dots, H_s denote the inertia groups of the generic points of Z'_1, \dots, Z'_s respectively and let H(P')denote the subgroup of I(P') generated by the H_i , $i=1,2,\dots,s$. (If s=0, put H(P')=(1).) Let

$$\bar{I}(P') = I(P')/H(P')$$

and call this the *small inertia group* of P'. Under the assumption that V' is smooth, Popp shows that $\bar{I}(P')$ is independent of the cover; i.e.,

176 R. F. LAX

for any smooth cover $V'' \to V$, if $P'' \in V''$ is a point lying over P, then $\overline{I}(P'') \cong \overline{I}(P')$. Thus, we may write $\overline{I}(P)$ and speak of the small inertia group of P.

Let W be an irreducible subscheme of V and suppose $P \in W$. Then one says that V is equisingular at P along W if the following two conditions hold:

- (1) P is a smooth point of W
- (2) Suppose P' is a point lying over P and W' is the irreducible component of $f^{-1}(W)$ containing P'. Then the canonical homomorphism $\bar{I}(W') \rightarrow \bar{I}(P')$ is a (surjective) isomorphism.

Let

Eqs $(V/W) = \{P \in W \mid V \text{ is equisingular at } P \text{ along } W\}$.

Popp shows, under the assumption that k is of characteristic 0, that this notion of equisingularity satisfies the axioms which any good notion should (cf. [6]).

In particular, given $Q \in V$, let M_Q denote the family of closed, irreducible subschemes W of V such that $Q \in \text{Eqs}(V/W)$. Then the family $\{\text{Eqs}(V/W) | W \in M_Q\}$, for fixed Q, has a greatest element called the *stratum* through Q.

Another important property is that if E is a stratum and $P \in E$, then there exists a neighborhood U of P in V and a minimal biholomorphic embedding $\psi: U \to \mathbb{C}^e$ (where $e = \dim \mathcal{M}_P/\mathcal{M}_P^2$) such that $\psi(U)$ is topologically isomorphic to the direct product of $\psi(U \cap E) = \mathscr{E}$ and a locally algebraic transverse section to \mathscr{E} at $\psi(P)$ (see [3] for details).

The above straification, in characteristic 0, is really quite neat: if E is a stratum and $P \in E$, then $E = \{Q \mid Q \text{ is analytically isomorphic to } P\}$.

2. The local rigidity of certain quotient schemes.

DEFINITION. Let V be a quotient scheme in characteristic 0. Stratify V as in §1. Then we will say V is *locally rigid* if given a point P on a stratum E, then there is a locally algebraic transverse section to E at P which is rigid.

PROPOSITION 1. Let a finite group I act by holomorphic automorphisms of \mathbb{C}^m , leaving the origin fixed. If I acts freely outside some I-invariant complex subspace W' (through the origin) of codimension ≥ 3 , then $X = \mathbb{C}^m/I$ is rigid.

Proof. As is noted in [5], this is a valid generalization of Theorem 3 of [4].

THEOREM 1. Suppose k is an algebraically closed field of characteristic 0. Let Y be a smooth, quasi-projective algebraic k-scheme and let G be a finite group of automorphisms of Y. Let X = Y/G. If the branch locus of Y over X is of codimension at least 3, then X is locally rigid.

Proof. Suppose x is a point of X. Let I denote the inertia group of x. Note that since there is no ramification in codimension 1, we have $I = \overline{I}$. In a neighborhood of x, we can linearize the action of I (cf. [1], [3]) so that X at x is locally analytically isomorphic to \mathbb{C}^n/I at the point Q which is the image of the origin under the canonical map $\mathbb{C}^n \to \mathbb{C}^n/I$.

Choose coordinates z_1, \dots, z_n in \mathbb{C}^n such that z_1, \dots, z_r span the fixed space of I (we may do this since the fixed space is linear). Then

$$\mathbf{C}^n/I \cong \operatorname{Spec}(\mathbf{C}[z_1, \dots, z_r] \otimes \mathbf{C}[z_{r+1}, \dots, z_n]^I).$$

The stratum on which Q lies is

$$E = \operatorname{Spec}\left(\mathbb{C}[z_1, \cdots, z_r]\right)$$

and the transverse section we desire is

$$S = \operatorname{Spec} \left(\mathbb{C}[z_{r+1}, \cdots, z_n]^I \right).$$

Locally at x, the space X is isomorphic to $E \times S$, not just topologically, but analytically as well. It follows from this and our hypotheses that the branch locus of the map Spec $(\mathbb{C}[z_{r+1}, \dots, z_n]) \to S$ has codimension at least 3. Hence, applying Proposition 1, we may conclude that S is rigid.

We may apply this theorem to M_g , the coarse moduli scheme for curves of genus g, in characteristic zero. M_g is the quotient of the smooth, higher-level moduli scheme $J_{g,n}$, for n sufficiently large, by the group $GL(2g, \mathbb{Z}/n)$ [2]. In [2], Popp computes the dimension of ramification points of the map $J_{g,n} \to M_g$. An inspection of his computations shows that, for g > 4, the branch locus of this map has codimension at least 3. Applying our theorem then yields:

PROPOSITION 2. M_g , the coarse moduli scheme for curves of genus g in characteristic 0, is locally rigid if g > 4.

REFERENCES

1. H. Cartan, Quotient d'un espace analytique par un groupe d'automorphismes, in Algebraic

178 R. F. LAX

Geometry and Topology, Princeton University Press (Princeton, 1957).

- 2. H. Popp, The singularities of the moduli scheme of curves, J. Number Theory, 1 (1969), 90-107.
- 3. ——, Stratifikation von Quotientmannigfaltigkeiten..., J. reine angew. Math., 250 (1971), 12-41.
- 4. M. Schlessinger, Rigidity of quotient singularities, Invent. Math., 14 (1971), 17-26.
- 5. ——, On rigid singularities, Rice University Studies on Complex Analysis, Vol. 59, No. 1 (1972), 147-162.
- 6. O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc., 77 (1971), 481-491.

Received November 1, 1973 and in revised form May 7, 1974.

LOUISIANA STATE UNIVERSITY

Pacific Journal of Mathematics

Vol. 56, No. 1 November, 1975

Shimshon A. Amitsur, Central embeddings in semi-simple rings	1			
David Marion Arnold and Charles Estep Murley, <i>Abelian groups, A, such</i>				
that $Hom(A,)$ preserves direct sums of copies of A	7			
Martin Bartelt, An integral representation for strictly continuous linear				
operators				
Richard G. Burton, Fractional elements in multiplicative lattices	35			
James Alan Cochran, Growth estimates for the singular values of				
square-integrable kernels	51			
C. Martin Edwards and Peter John Stacey, <i>On group algebras of central</i>				
group extensions	59			
Peter Fletcher and Pei Liu, <i>Topologies compatible with homeomorphism</i>				
groups	77			
George Gasper, Jr., <i>Products of terminating</i> $_3F_2(1)$ <i>series</i>	87			
Leon Gerber, <i>The orthocentric simplex as an extreme simplex</i>				
Burrell Washington Helton, A product integral solution of a Riccati				
equation	113			
Melvyn W. Jeter, On the extremal elements of the convex cone of				
superadditive n-homogeneous functions	131			
R. H. Johnson, Simple separable graphs	143			
Margaret Humm Kleinfeld, <i>More on a generalization of commutative and</i>				
alternative rings	159			
A. Y. W. Lau, The boundary of a semilattice on an n-cell	171			
Robert F. Lax, <i>The local rigidity of the moduli scheme for curves</i>				
Glenn Richard Luecke, A note on quasidiagonal and quasitriangular				
operators	179			
Paul Milnes, On the extension of continuous and almost periodic				
functions	187			
Hidegoro Nakano and Kazumi Nakano, <i>Connector theory</i> .	195			
James Michael Osterburg, Completely outer Galois theory of perfect				
rings	215			
Lavon Barry Page, Compact Hankel operators and the F. and M. Riesz				
theorem	221			
Joseph E. Quinn, <i>Intermediate Riesz spaces</i>	225			
Shlomo Vinner, <i>Model-completeness in a first order langua</i> ge with a				
generalized quantifier	265			
Jorge Viola-Prioli, <i>On absolutely torsion-free rings</i>	275			
Philip William Walker, A note on differential equations with all solutions of				
integrable-square	285			
Stephen Jeffrey Willson, Equivariant maps between representation				
spheres	291			