Pacific Journal of Mathematics

A NOTE ON DIFFERENTIAL EQUATIONS WITH ALL SOLUTIONS OF INTEGRABLE-SOUARE

PHILIP WILLIAM WALKER

Vol. 56, No. 1 November 1975

A NOTE ON DIFFERENTIAL EQUATIONS WITH ALL SOLUTIONS OF INTEGRABLE-SQUARE

PHILIP W. WALKER

It is shown that if all solutions to $l(y) = \lambda wy$ and $l^+(y) = \lambda wy$ satisfy $\int_a^b |y|^2 w < \infty$ for some complex number λ then so do all solutions for every complex number λ . The result is derived from a corresponding one for first order vector-matrix systems.

We shall be concerned with solutions to

(1)
$$l(y) = 0$$
 on (a, b) ,

(2)
$$l^+(y) = 0$$
 on (a, b)

(3)
$$l(y) = \lambda wy \quad \text{on} \quad (a, b), \quad \text{and}$$

(4)
$$l^+(y) = \lambda wy \quad \text{on} \quad (a, b)$$

which satisfy

$$\int_a^b |y|^2 w < \infty.$$

In these expressions (a, b) is an interval of the real line $(a = -\infty \text{ and/or } b = \infty \text{ is allowed})$, w is a weight, i.e., a positive valued continuous function on (a, b), λ is a complex number, l is an mth order linear differential operator given by

(6)
$$l(y) = \sum_{k=0}^{m} a_k y^{(m-k)}$$

where each a_k is an m-k times continuously differentiable complex valued function defined on (a, b), $a_0(t) \neq 0$ for all $t \in (a, b)$, and l^+ is the formal adjoint of l so that

(7)
$$l^{+}(y) = \sum_{k=1}^{m} (-1)^{m-k} (\bar{a}_{k}y)^{(m-k)}.$$

In an earlier paper, [11], we defined w to be a compactifying weight

for l provided that every function which is a solution either of (1) or of (2) satisfies (5). If follows from Theorem 2-1 of [11] that if w is a compactifying weight for l then every function which is a solution either of (3) or of (4) satisfies (5) for every complex number λ .

The deficiency index problem (see for example [2] and [8]) for formally self-adjoint equations (where $l = l^+$) is concerned with finding the dimension of the linear manifold of solutions to (3) which satisfy (5). One of the results of this theory ([3], [4], [5], [6], [7], [10], and [12]) is that if this dimension is m (the order of l) for some complex number λ and m > 1 then it is m for every complex number λ .

While much of the theory for the self-adjoint case breaks down when $l \neq l^+$ we wish to show that this result carries over.

THEOREM 1. Let each of λ_1 and λ_2 be a complex number (λ_i real, even $\lambda_i = 0$ is allowed). Let m > 1. If every function which is a solution of either (3) or (4) satisfies (5) when $\lambda = \lambda_1$ then every function which is a solution of either (3) or (4) satisfies (5) when $\lambda = \lambda_2$.

This follows as a corollary to an analogous theorem (Theorem 2 below) for first order vector-matrix equations.

We consider the equations,

(8)
$$Jy' = [\lambda A + B]y \quad \text{a.e.} \quad \text{on} \quad (a, b), \quad \text{and}$$

(9)
$$Jy' = [\lambda A + B^*]y$$
 a.e., on (a, b)

where J is a skew-symmetric ($J^* = -J$, * denoting conjugate transpose) $m \times m$ matrix, each of A and B is a complex $m \times m$ matrix valued function which is Lebesque integrable over each compact subinterval of (a, b), λ is a complex number, and A(t) is nonnegative definate a.e. on (a, b).

It was shown in [13] that, given l; J, A, and B may be chosen so that every solution of (3) satisfies (5) if and only if every solution of (8) satisfies

$$\int_a^b y^*Ay < \infty,$$

and every solution of (4) satisfies (5) if and only if every solution of (9) satisfies (10). For the choice of J and A used in [13] it is also the case that trace $J^{-1}A \equiv 0$ when m > 1.

Thus Theorem 1 above follows from Theorem 2 below.

THEOREM 2. Let each of J, A, and B satisfy the conditions imposed above. Let m > 1. Let each of λ_1 and λ_2 be a complex number (λ_j real, even $\lambda_j = 0$ is allowed). Let $\int_a^b |\operatorname{tr} J^{-1} A| < \infty$.

If every vector function which is a solution of either (8) or (9) satisfies (10) when $\lambda = \lambda_1$ then every vector function which is a solution of either (8) or (9) satisfies (10) when $\lambda = \lambda_2$.

Proof. Let $Y(\lambda)$ and $Z(\lambda)$ be fundamental matrices for (8) and (9) respectively. (We will write $Y(t, \lambda)$ and $Z(t, \lambda)$ to denote the value of these functions at $t \in (a, b)$.) Let U be defined by

(11)
$$Y(\lambda_2) = Y(\lambda_1)U \quad \text{on} \quad (a,b).$$

Multiplying on the left by J, differentiating, and using (8) we have,

$$(\lambda_2 A + B) Y(\lambda_2) = (\lambda_1 A + B) Y(\lambda_1) U$$

+ $JY(\lambda_1)U'$ a.e. on (a, b) .

From (11) we have,

$$JY(\lambda_1)U' = (\lambda_2 - \lambda_1)AY(\lambda_1)U$$
 a.e. on (a, b) .

Multiplying on the left by $Z^*(\lambda_1)$ we have

(12)
$$Z^*(\lambda_1)JY(\lambda_1)U' = (\lambda_2 - \lambda_1)Z^*(\lambda_1)AY(\lambda_1)U$$
 a.e. on (a, b) .

We first note that

(13)
$$\int_a^b \|\boldsymbol{Z}^*(t,\lambda_1)Y(t,\lambda_1)\|dt < \infty$$

where $\|\cdot\|$ is any matrix norm. In order that (13) hold it is sufficient that

(14)
$$\int_a^b |z^*(t,\lambda_1)A(t)y_j(t,\lambda_1)|dt < \infty$$

whenever z_i a column of Z and y_i is a column of Y. By the Cauchy-Schwartz inequality we have a.e. on (a, b) (writing z for $z_i(t, \lambda_1)$ and y for $y_i(t, \lambda_1)$) that

(15)
$$|z^*Ay| \leq (z^*Az)^{1/2} (yAy)^{1/2}.$$

From

$$0 \le ((z * Az)^{1/2} - (y * Ay)^{1/2})^2$$

we have that

(16)
$$(z^*Az)^{1/2} \cdot (y^*Ay)^{1/2} \leq \frac{1}{2}(z^*Az + y^*Ay).$$

From (15), (16) and the hypothesis that every solution of (8) or (9) satisfies (10) when $\lambda = \lambda_1$ we see that 14 holds.

Next we establish that

$$(\mathbf{Z}^*(\lambda_1)\mathbf{J}\mathbf{Y}(\lambda_1))^{-1}$$

is bounded on (a, b). Let $\alpha \in (a, b)$ then by Theorem 4 of [13] it follows that

$$Z^*(t,\lambda_1)JY(t,\lambda_1)$$

$$= Z^*(\alpha,\lambda_1)JY(\alpha,\lambda_1) + (\lambda_1 - \overline{\lambda}_1) \int_{\alpha}^{t} Z^*(s,\lambda_1)A(s)Y(s,\lambda_1)ds$$

for all $t \in (a, b)$. Thus from (13) we see that

(18)
$$Z^*(t,\lambda_1)JY(t,\lambda_1)$$

has a limit as $t \to a$ and as $t \to b$. In order to show that (17) (which is continuous) is bounded it is then sufficient to show that the limits of (18) at a and at b are nonsingular. From Abel's formula for (8) and (9) (recall that $J^* = -J$, $A^* = A$, and tr PQ = tr QP for matrices P and Q) we have that

$$\det (\mathbf{Z}^*(t,\lambda_1)J\mathbf{Y}(t,\lambda_1))$$

$$= \det (\mathbf{Z}^*(\alpha,\lambda_1)J\mathbf{Y}(\alpha,\lambda_1))$$

$$\cdot \exp \int_{\alpha}^{t} \operatorname{tr}((J^{-1}\lambda_1A + J^{-1}B^*)^* + J^{-1}\lambda_1A + J^{-1}B)$$

$$= \det ((\mathbf{Z}^*(\alpha,\lambda_1)j\mathbf{Y}(\alpha,\lambda_1)) \exp \int_{\alpha}^{t} (\lambda_1 - \bar{\lambda_1}) \operatorname{tr} J^{-1}A.$$

Since by hypothesis $\int_a^b |\operatorname{tr} J^{-1} A| < \infty$ the limits of (18) must be nonsingular.

It now follows that (12) is equivalent to an equation of the form

(19)
$$U' = MU$$
 a.e. on (a, b)

where $\int_a^b ||M(t)|| dt < \infty$. It is well known (see, e.g. Theorem 5.4.2 of [9]) that all solutions of (19) are bounded.

Returning to (11) we see that every solution of (8) when $\lambda = \lambda_2$ is a bounded multiple of a solution of (8) when $\lambda = \lambda_1$.

The argument to show that every solution of (9) satisfies (10) when $\lambda = \lambda_2$ is similar.

Theorem 2 is a generalization of a result of Atkinson (Theorem 9.11.2 of [1]) for the case where $B^* = B$.

Theorem 1 is also valid for the quasidifferential expressions considered in [13] where no smoothness conditions on the coefficients of l are required.

REFERENCES

- 1. F. V. Atkinson, Discrete and Continuous Boundary Value Problems, (Academic Press. New York, 1961).
- 2. A. Devinatz, The deficiency index problem for ordinary self-adjoint differential operators, to appear.
- 3. W. N. Everitt, Integrable-square solutions of ordinary differential equations, Quart. J. Math. Oxford Ser., (2) 10 (1959), 145-55.
- 4. ——, Integrable-square solutions of ordinary differential equations (II), Quart. J. Math. Oxford Ser., (2) 13 (1962), 217-20.
- 5. ——, Integrable-square solutions of ordinary differential equations (III), Quart. J. Math. Oxford Ser., (2) 14 (1963), 170-80.
- 6. —, Singular differential equations, I; the even-order case, Math. Ann. 149 (1963), 320-40.
- 7. ——, Integrable-square, analytic solutions of odd-order, formally symmetric, ordinary differential equations, Proc. London Math. Soc., (3) 25 (1972), 156-182.
- 8. ——, Integrable-square solutions of ordinary differential equations, Nieuw Archief Voor Wiskunde, to appear.
- 9. E. Hille, Lectures on Ordinary Differential Equations, (Addison-Wesley, Reading Massachusetts 1969).
- 10. V. I. Kogan and F. S. Roje-Beketov, On the deficiency indices of differential operators of odd order with matrix coefficients Publications of the State University, Karkov, UKR. S.S.R. No. 7 (1969), 93-95.
- 11. P. W. Walker, Adjoint boundary value problems for compactified singluar differential operators, Pacific J. Math., to appear.
- 12. ——, A vector-matrix formulation for formally-symmetric ordinary differential equations with applications to solutions of integrable square, to appear.
- 13. ——, An adjoint preserving matrix formulation for ordinary differential equations, to appear.

Received August 10, 1973. Research for this paper was partially supported by National Science Foundation Grant GP-38212.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY AND UNIVERSITY OF HOUSTON

Pacific Journal of Mathematics

Vol. 56, No. 1 November, 1975

Shimshon A. Amitsur, Central embeddings in semi-simple rings	1				
David Marion Arnold and Charles Estep Murley, <i>Abelian groups, A, such</i>					
that $Hom(A,)$ preserves direct sums of copies of A	7				
Martin Bartelt, An integral representation for strictly continuous linear					
operators					
Richard G. Burton, Fractional elements in multiplicative lattices	35				
James Alan Cochran, Growth estimates for the singular values of					
square-integrable kernels	51				
C. Martin Edwards and Peter John Stacey, <i>On group algebras of central</i>					
group extensions	59				
Peter Fletcher and Pei Liu, <i>Topologies compatible with homeomorphism</i>					
groups	77				
George Gasper, Jr., <i>Products of terminating</i> $_3F_2(1)$ <i>series</i>	87				
Leon Gerber, <i>The orthocentric simplex as an extreme simplex</i>	97				
Burrell Washington Helton, A product integral solution of a Riccati					
equation	113				
Melvyn W. Jeter, On the extremal elements of the convex cone of					
superadditive n-homogeneous functions	131				
R. H. Johnson, Simple separable graphs	143				
Margaret Humm Kleinfeld, <i>More on a generalization of commutative and</i>					
alternative rings	159				
A. Y. W. Lau, The boundary of a semilattice on an n-cell	171				
Robert F. Lax, <i>The local rigidity of the moduli scheme for curves</i>	175				
Glenn Richard Luecke, A note on quasidiagonal and quasitriangular					
operators	179				
Paul Milnes, On the extension of continuous and almost periodic					
functions	187				
Hidegoro Nakano and Kazumi Nakano, <i>Connector theory</i> .	195				
James Michael Osterburg, Completely outer Galois theory of perfect					
rings	215				
Lavon Barry Page, Compact Hankel operators and the F. and M. Riesz					
theorem	221				
Joseph E. Quinn, <i>Intermediate Riesz spaces</i>	225				
Shlomo Vinner, <i>Model-completeness in a first order langua</i> ge with a					
generalized quantifier	265				
Jorge Viola-Prioli, <i>On absolutely torsion-free rings</i>	275				
Philip William Walker, A note on differential equations with all solutions of					
integrable-square	285				
Stephen Jeffrey Willson, Equivariant maps between representation					
spheres	291				