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Recently, the (p, cr)-injectivity of modules with respect to a
couple of preradicals has been investigated. In the general case,
the study of all the (p, σ)-injectivities reduces to that with σ a
torsion preradical. For a special class of rings the
(p, 0 )-injectivities are completely described. The description of
all quasi-injective modules over a Dedekind domain appears as a
simple corollary.

J. A. Beachy [1] has introduced a new concept of p-density of a
submodule N of a module M and he has investigated the (p,σ)-
injectivity of modules with respect to a couple of preradicals. In this
paper we shall show that to any couple (p, σ) of preradicals there exists
a torsion preradical σ' such that the (p, σ)-injectivity and (p, σ')-
injectivity have the same meanings. Further, in the study of (p, σ)-
injectivity, where p is a torsion preradical, p can be replaced by a
torsion radical. Finally, the (p, cr)-injecίivities are completely deter-
mined for a class of subcommutative rings (containing all Dedekind
domains) and this yields a characterization of all quasi-injective mod-
ules generalizing a result of Harada [7] (the methods are quite different).

We start with some basic definitions. A preradical p for the
category RM of left R -modules over an associative ring R with unity is
any subfunctor of the identity, i.e. p assigns to each module M a
submodule p(M) in such a way that every homomorphism M^N
induces p(M)->ρ(N) by restriction. A preradical p is said to be
idempotent if p 2 = p, torsion if p is left exact and it is called a radical if
p(M/p(M)) = 0. It is well-known that p is torsion iff L C M implies
ρ(L) = L Π p(M) (see e.g. [10], Prop. 1.4). For a preradical p, a
module M is called p-torsion if p(Λf) = M and p-torsion-free if
ρ(M) = 0. Following J. A. Beachy-[1] a submodule N of a module M
is called p-dense in M if M IN C p(K/N) for some module K contain-
ing Λί, or, equivalently, if M/N Cp(M/JV) where M denotes the
injective hull of M. Finally, for a couple (p, σ) of preradicals a module
Q is said to be (p, σ)-injective if for every diagram / j %°^N with No

p-dense in N and Ker / σ -dense in N there is g : N—> Q making this
diagram commutative. If p is a preradical and M a module then the
module Q is said to be (p, M)-injective if every diagram / | Q°^M with Λf0
p-dense in Λί can be made commutative by some homomorphism
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For a preradical σ let σ' be the smallest torsion preradical which
contain σ. Then σ'(M) = M Π σ(M), so σ'{M) = σ(M) if M is injec-
tive, and M is σ-torsion iff 0 is σ-dense in M. For a preradical p one
can construct an ordinal sequence of preradicals in the following way:

p'{A) = p{A),

ρa(A)= U pβ(A), a a limit ordinal.
β<α

As it is well-known (see [10]), the preradical p* defined by p*(Λ) =
ρa(A) whenever ρa(A) = ρa+ί(A) is a radical and, in fact, the smallest
radical containing p (we put p^σ whenever ρ(M)Cσ(Af) for all
modules M).

LEMMA 1. Let p, σ be preradicals for RJί. A module Q is (p, σ)-
injective iff it is (p, M)-injective for all modules M having 0 as a σ~dense
submodule.

Proof. See [1], Theorem 23.

THEOREM 2. Let p, σ be preradicals for RM and let Q E RM. Then
(a) Q is (p,σ)~injective iff it is (ρ,σ')-injective,
(b) if p is a torsion preradical, then Q is (p, σ)-injective iff it is

(ρ*,σ)-injective.

Proof. For to prove (a) it suffices to use Lemma 1, since 0 is
σ-dense in M iff 0 is σ'-dense in M.

If Q is (p*,cr)-injective then it is (p, σ)-injective since p ^
p*. Assume that Q is (p, σ)-injective, and let N0CN be p*-dense,
with f :N0-+Q and Ker / σ-dense in N. By a well-known argument
using Zorn's lemma there exists a maximal extension fx: Nx -» Q. Then
p{NINx) = 0, since otherwise /, could be extended to the p-closure of
Nx in N (by (a), σ can be assumed to be a torsion preradical), and so
therefore p*(NlNx) = piN/NJ = 0, which implies N, = N.

THEOREM 3. // R is left hereditary, then the following equivalent
conditions hold for each preradical p for RM.

(1) MQCM is p-dense iff it is pf-dense,
(2) // Mo CM is p-dense and MIMO = NINO, then N0CN is

p-dense.
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Proof. The equivalence of conditions (1) and (2) is obvious. If R
is left hereditary, then if M0CΛf, M/Mo is injective, and so Mo is
p-dense in M iff M/Mo C p(M/M0) = p'(MIM0) iff Λί0 is p'-dense in M.

Before proceeding we recall some basic definitions (see e.g.
[2]). Let 7r be the set of all pair-wise non-isomorphic simple left
R-modules. For every module Af and every subset TΓ'CTΓ let us
define Sπ{M) as the submodule of M generated by all simple sub-
modules of M isomorphic to some module from π ' . It is easy to see
that Sr> is a torsion preradical. The smallest radical S*. containing Sv
(defined above) is torsion and is said to be the fundamental torsion
radical. A ring R is said to have primary decompositions (PD) if
SUM) = Σ°UGπ SUM) for every module M. It is well-known that for a
subcommutative ring with (PD) for which Λί/M2 is either 0 or a simple
module for every maximal ideal M there is S* = SZ where ω is the first
infinite ordinal (see e.g. [9]). Recall ([9], Def. 7.1) that a 5^-torsion
module M is said to be quasicyclic if Sa

π

+\M)ISa

π(M) is either 0 or
simple for all ordinals a and Sl(M) WM for all natural integers n. For
further purposes we denote by 0 the zero functor and by o° the identity
functor. In the rest of this paper we shall deal with a subcommutative
ring R having (PD) such that M/M2 is either 0 or a simple module for
every maximal ideal M, every proper homomorphic image of R is
5*-torsion and every preradical for RM satisfies condition (2) of
Theorem 3. For easy references we shall call such a ring a BS-
ring. The last condition is independent from all others as shows the
following example: Taking as R = Z/(p3)the factor-ring of integers
modulo p 3 and ρ(M) = JM where / is the Jacobson radical of R, we
obtain a preradical which does not satisfy the condition (2) from
Theorem 3, since J C{p3) = C(p) so that 0 is p-dense in C(p2). On
the other hand, C(p3)IC(p2) is not p-torsion, so that C(p) is not p-dense
in C(p3), C(p3) being injective. The idempotent radical σ on the
abelian groups category assigning to each group its greatest divisible
subgroup provides an example of a preradical which is not torsion and
satisfies the condition (2) from Theorem 3.

THEOREM 4. Let Rbe a BS-ring. Then p ^ <» is a torsion preradi-
cal for RM iff to every UGπ there is n (U) E {JV U {0} U M , N the set of
natural integers} such that p(M) = Σ°ueπSu(U)(M) for all M GRM.

Proof We can obviously restrict ourselves to the proof of the
necessity. It is well known that the smallest radical p* containing p is
torsion. Now from the correspondence between torsion radicals and
radical filters (see e.g. [8]) and from the fact every proper homomorphic
image of R is 5*-torsion it easily follows p* is fundamental, p* = 5*
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for some TΓ'CTΓ. Thus for every M E RM, ρ(M) = Σ°UGΊTMU =
Σ°ueπpu(M) where pυ = Svp. Now it suffices to describe pυ. Let / be
a maximal ideal of R such that R\I = U. Two cases can arise:

(1) All the cyclic modules R/In, n = 1,2, ••• are p-torsion. If
jn _ jn+i for s o m e n a tura l integer n, then S£ = Sv

+i and pu - Sv =

Su> If In/Γ+ι for all π then as in the case of abelian groups the

[/-quasicyclic module (i.e. quasicyclic module M with
Sn

π

+ί(M)ISn

π(M)=U) is a direct limit of RIP, n = 1,2, and thus
Pu - Sυ, since by [2], Theorem 3.3 every 5?rtorsion module can be
embedded in a direct sum of quasicyclic modules.

(2) There exists a nonnegative integer n such that R/Γ is
p-torsion and R/Ik, k > n is not p-torsion. Now by [2], Theorem 4.2
for every M ERM Sυ{M) is a direct sum of cyclic submodules each of
which is isomorphic to some R/V, I ^ n and hence Sΰ ^pv. On the
other hand, for any M E RJί every cyclic submodule of pu(M) is
isomorphic to some RH\ / g n, so that Γρυ{M) = 0 and Sv = ρυ.

THEOREM 5. Let R be a BS-ring and M a module. Then the
following hold:

(i) If M is not S%-torsion then a module Q is M-injective iff it is
injective,

(ii) if Mis Sl-torsion then a module Q is M-injective iffSv

{υ\Q) =
SuiU)(0) for all U e TΓ, where n(U) is the smallest ordinal for which

Proof. By [1], Corollary 2.9 Q is M-injective iff it is (°°,p)-
iπjective where p is the smallest torsion preradical for which M is
torsion.

(i) Taking an element x EM - S*(M) we have Rx = Λ, R being
a BS-ring. Thus ρ(R) = R and p = <». It is now obvious that Q is
(oo9 oo)-jnjective iff it is injective.

(ii) By Theorem 4, p (N) = Σ°UEiΓ S u{U)(N) for every N E RM. As
it is easily seen the numbers n(U) are just the smallest ordinals for
which Su

iυ)(M) = Su

iU)+\M).X By [1], Theorem 2.5 a module Q is
(oo,S^(ly))-injective iff Snu{U)(Q) = Snu{U\Q) and the assertion follows.

COROLLARY 6. Let R be a BS-ring and Q a module. Then Q is
quasi-injective iff it is either injective or of the form Q =Σ β

ι / e π Sί(Q)
where every Sf^Q), U E TΓ is a direct sum of pair-wise isomorphic cyclic
or quasi-cyclic modules.

Proof. We proceed to the necessity, the sufficiency being obvious
by Theorem 5. Suppose that Q is quasi-injective. By the preceding
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Theorem Q is either injective or of the form Q = Σ°UEπSUQ) By [2],
Theorems 3.2 and 4.2 every S?KQ) is a direct sum of quasicyclic and
cyclic modules, so that it suffices to use Theorem 5 (ii).

THEOREM 7. Let R be a BS-ring and p, σ^ oo be two preradicals
for RM. Then there exists a module M such that a module Q is (p, σ)-
injective iff it is M-ίnjective. Moreover, M can be chosen quasi-
injective.

Proof. We shall divide this proof into three steps.
(1) We show that if p, σ are torsion preradicals such that p* Π σ,

σ^o° and Q is a (°°,p)- injective module, then Q is (p, σ)-
injective. So, let Q be a (oo, p)-injective module and let us consider the
diagram

K
t

N0^N

M
Q

with N/No p-torsion, N/K σ- torsion, K = Ker /. It follows from
p = p* Π σ and Theorem 4 that σ(M) = ρ(M) ®τ(M) for every
M G RM and a suitable torsion preradical r. For JW'AK = r(N/K) the
module (N' + N0)/N0 = N 7 N 0 n N ' is p-torsion and τ-torsion so that
ΛΓ C No. Thus / induces

fϊ
Q

= τ(NIK) 0 (p(NIK) Π ΛΓo/K)-> τ(N/K) ®P(N/K)

By hypothesis, the restriction of / to ρ(N/K)Π No/K extends to a
homomorphism p(N/K)->Q and the assertion follows easily.

(2) It follows from Theorems 2 and 3 that Q is (p, cr)-injective iff it
is ((ρ')*,σ')-injective. Now by the definition Q is ((p')*,σ')-injective
iff it is ((p')* Π σ', σr)-injective and the preceding part results that Q is
(p, σ-)-injective iff it is (oo, τ)-injective, where r = (p')* Π σ'.

(3) From (2) and Theorem 4 it easily follows that a module Q is
(oo, τ)-injective iff it is (oo, S^(l/))-injective for all U E π where r(M) =
Σ°UGπSϊ}U)(M). By [1], Theorem 2.5 Q is (oo,S£(i;))-injective iff
SuiU)(Q)CQ and the idempotence of SZ(U) yields that Q is (p,σ)-
injective iff SnuiU\Q) = SnuiU\Q). For U G π, U = R/IJ a maximal
ideal of £, we put Mu=R/In(U) if n( l/)6NU{0} and M^ is an
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l/-quasicyclic module if n(U) = ». Taking M = Ί:υ^Mυ it suffices to
use Theorem 5 (ii). M is quasi-injective by Corollary 6.

REMARK. M. Harada ([7], Corollary to Proposition 2.6) has de-
scribed the structure of quasi-injective modules over a Dedekind
domain. This description follows from our Corollary 6 immediately.
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