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J. D. BuckHoLTZ AND J. K. SHAW

This paper is concerned with series expansions of the form
f(z) =35 hupi(z), where the functions {p,} are analytic and
satisfy a certain asymptotic condition. Relationships between
the space % of expandable functions, the coefficient space 7, and
the matrix operator B, = p{’(0) are studied, and % is shown to
be a Banach space isomorphic to c¢,, the space of complex
sequences with limit 0. Necessary and sufficient conditions for
convergence of X hyp.(z) are given in terms of the coefficient
sequence 7.

Introduction. Let {p.}; be a sequence of functions analytic on
a region () which contains the point 0. A function f is said to possess a
{p.} expansion if there exists a complex sequence h = {h,}; such that

1.1 'QMMﬂ

converges uniformly to f(z) on compact subsets of (). The set of all
such f is the expansion class of {p.}; we shall denote this set by %, and
denote by # the set of all sequences h such that (1.1) is uniformly
convergent on compact subsets of ().

Let % denote the set of all complex sequences y = {y;}; such that

y, = f0), i=0,12,--,
for some f € %, and define the infinite matrix B by
Bjk = pl((j)(o), Oé.,’ k < o,
We make no distinction between B and the linear sequence-to-sequence
operator it defines. It is the relationship between the operator B, the
expansion class & and the coefficient space # that we study.

Suppose that f € ¥ is given by (1.1) and let y = {f?(0)};. If we
differentiate (1.1) j times and set z =0 we obtain

=10 =3 hp?(©)

=%3@=wm.
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Therefore y = Bh. It follows that the coefficient space # is contained
in the domain of B and the space % is contained in the range of B. In
[2], the conditions imposed on {p, };, which led to an asymptotic formula
of the type

(1.2) Dk = au,

where ¢ is analytic in  and {a}; is a complex sequence, were
sufficiently strong to insure that the domain and range of B were
precisely # and %. Additionally, the expansion class ¥ was shown to
be a Banach space isomorphic to ¢, the space of complex sequences
with limit 0, normed with the supremum norm. In the present paper we
relax certain of these conditions considerably and obtain the same
results under assumptions leading to an asymptotic formula of the type

(1.3) Dk = 0@+ @ar + 0 WO,y

where the functions ¢,, - - -, ¢, are analytic and linearly independent in
Q. Typical examples exhibiting this behavior are found in the Ber-
noulli and Euler polynomials ([1]). For the Bernoulli polynomials one
has

2m‘z_+_ - n , —2wiz 3m|z|
e (—1De +O< e

(14) pn(z): - (27”),\ (37T)n—1

),n—»oo,

In a number of classical polynomial expansions it happens that
convergence at a single point, or on certain finite sets, implies uniform
convergence on every compact set. This is the case with Lidstone
polynomials [4], the Abel interpolation series [2], certain Appell polyno-
mials {3], and the more general polynomials considered by W. T. Martin
{5]. We show that the assumptions we place on {p.}; imply a general
result in this direction which includes most of those obtained previously
as special cases.

2. Notation and statement of results. Let d be a fixed
positive integer and let P, denote the row matrix

Pk(z) = [pkd(z)a pkd+1(z)’ . "pkd‘}-d—l(z)]’ k = 09 ]a23 v ‘,Z EQ-

Our principal requirement on the sequence {p,}; is that there exist a
vector function

CD(Z) = [‘pl(z)s (PZ(Z), ) QDd(Z)]

and a sequence {a;}; of d X d invertible matrices such that
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(2.1 lim p,(z)ai' = P(z),

for all z € Q. We norm the space of d-dimensional row matrices with
the norm '

IR, = max [R.|,

I=t=d

the space of d X d matrices with the norm

’

i=t j=

d d
”MHG = Z lMii

and the space of d-dimensional column vectors with the norm

., =max |C|.

I=t=d

We require that

(2.2) > |P(2)ai! — Peo(z)ail|, converges
k=0
uniformly on compact subsets of(),

(we define P_,=0) and we shall also need the requirement that the
matrices {a,}; satisfy the “uniform invertibility” condition

(2.3) sup [l floflai'floc <o

0=k <x

Condition (2.2) implies that the convergence in (2.1) is at least uniform
on compact subsets of ). Our last requirement is that

2.4 the functions ¢,, ¢,, - - -, ¢, are

linearly independent.

We define a uniqueness set for functions f,, f,, - - -, f,, with common
domain Q to be a subset E of () with the property that the restrictions to
E of the functions f,,---,f, are linearly independent. For example,
every infinite subset of () with a limit point in () is a uniqueness set, as
are “‘most” finite subsets of Q. In case m =1, a set ECQ is a
uniqueness set if and only if f(z) #0 for some z € E.

For notational convenience, we introduce the mapping A from
numerical sequences /4 to d-dimensional column vectors H defined by
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Nia
()\h)k:Hk: Pia+i , k=0,1,2,---

hkd+d-1
We now state our principal results.

THEOREM 1. Suppose that (2.1)-(2.4) hold and let h be a complex
sequence. Then the following are equivalent:

1)  Zi.oax converges;

(i)  h belongs to the domain of B,

(1)) ZF.ohupi(z) converges for all z in some uniqueness set for
P, P2 5 Pa s

(v) Zi-ohpi(2) is uniformly convergent on compact subsets of ).

THEOREM 2. Suppose that (2.1)-(2.4) hold and let h and y be
complex sequences. Theny = Bh if and only if Z;_, hp.(z) is uniformly
convergent on compact subsets of Q) to the function f whose power series
at 0 is given by

f(z) = Z w2l it

The problem of explicitly determining those sequences y which
belong to the space % is extremely difficult, even for very simple
sequences {p,}; (cf. [2]). The coefficient space # is, however, much
more accessible, and conditions (2.1)-(2.4) allow us to characterize it
completely.

For each integer i, 1 =i =d, let S® denote the complex sequence
with terms given by

Siia=(a)p 1=2j=d, 0sk <wx.

THEOREM 3. Suppose that (2.1)-(2.4) hold. A complex sequence
h belongs to ¥ if and only if each of the series

(2.5) > S¢Ph, 1si=d,
k=0

is convergent.
We note here for later use that if (2.5) converges, then

2.6) S Sih, = (2 ak(/\h)k>, 1=i=d
k=0 i

k=0
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The expansions discussed in [2] and [3] share two interesting and
apparently unrelated properties. The first of these is uniqueness: if
Si-up(z)y=0forallz€Q, then h, =0,k =0,1,2,---. The second is
the existence of an underlying Banach space structure; that is, one can
define a norm || on % under which & is complete, such that
convergence with respect to |-|| implies uniform convergence on
compact subsets of (), and such that {p,}; is a strong basis for the
Banach space %. In the present setting we show that the first of these
properties implies the second, and also that % is isomorphic to c,.

THEOREM 4. Suppose in addition to (2.1)-(2.4) that

2.7 > hp(z) =0 for all z € Q implies
k=0
that h, =0, k=0,1,2,---.

For each f € F with

f(z) zgo hpe(2),

set

i (e ()\h )k

k=n

If|= sup

0=n<x T

Then & is a Banach space, {p,}; is a basis for %, and the mapping

Af=)\-'{i ak()\h)k}:

k=n =0

defines an isomorphism between % and c,.
Note that the uniqueness assumption (2.7) is, in view of Theorem 2,
equivalent to the assertion that the operator B is one-to-one.

3. Proofs of theorems. The following lemma will be used in
the proof of Theorem 1.

LemMA 1. Suppose that {u.}; is a sequence of d X d invertible
matrices such that

3.1 ‘;) ”uk+| — U IIG < ®,

and that {u.}; converges elementwise to an invertible matrix. Then if
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{v.}; is a sequence of column vectors, Z;.,v, converges if and only if
-0 WU, converges.

Proof. Suppose Zjv, converges. Writing s, =0, +---+v, we
have 3P w0 = U,S, + it (U — U, )8 Since ool (W — wes) s ||, =
d 27 ollwe — uysllo || s |l < oo, the convergence of 5w, follows.

Now suppose that 5 u,v, converges, set o, = Uy0y+ - - * + U0, and
note that 3 v, = oui'(wo) = u;'on + ZR2o U (Ueer — W)U L0
Since {u,}; converges to an invertible matrix, say u, then {u7'}; must
converge to u~'. Consequently, the sequence {u;' o,}; converges and

the sequence {||uz'||s}s is bounded. In view of

”u;l(ukﬂ ~UIU G O% |, = d3|| Upiy— Uy ”G ||u;l+1“6 ”u;lﬂuc "Uk

T

(3.1) shows that 2§ v, converges, and this completes the proof.
We will require the following lemma on linearly independent sets of
functions. The proof is omitted.

LEMMA 2. Let E be a uniqueness set for f,,f,, - -, f.. Then there
are points z,,z,,* -+, zy it E such that the matrix (f(z,)), 1=j, k =d, is
invertible. If f,,-- -, f,. are analytic in (), then there exist nonnegative
integers ny,n,,---,n, such that the matrix (f™0)), 1=j, k=d, is
invertible.

LEMMA 3. Suppose that (2.1)-(2.3) hold and let h be a complex
sequence such that Z;_,a,(Ah), converges. Then

(3.2) z i (2)

converges if and only if

3.3) Z PAz)(Ah),

converges. Moreover, (3.2) converges uniformly on compact subsets of
Q if and only if the same is true of (3.3).

Proof. Since

© x  d-1
’(220 Pk (Z)(/\h )k = ‘(2:0 Z{) hkd+tpkd+( (Z)’

then clearly convergence of (3.2) implies convergence of (3.3).
In the other direction, it is sufficient to prove that, for fixed ¢,
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3.4) !li_r_g RpisiPrase (2) =0

uniformly on compact subsets of (. Let {x,}; be the sequence of
column vectors defined by

©

X =2, a;(Ah), k=0,1,2,---,

i=k
and define

3.5) Q(z)=P(2)ai' — P_(2)ail, k=0,1,2,---.

Then (Ah), = ai'(xx — x41) and P(z) = 2, Q;(2)au, 0 =k <. There-
fore

| ng 1P+ (2)| = | (AR, (PA2)) |

(20 Q (Z)an>

2} Qf (Z)an

= |(01Z1(xn - xn+1))t |

=o' (X = Xus1)

T
p

go,-(z)'

g d2||a;l”G Hx'l — Xn+1 a, HG

T

P

Since {(x, — x..1)}; converges to the zero vector, the result follows from
(2.3). The uniform convergence is a consequence of (2.2).

In view of Lemma 3, Theorem 1 is equivalent to the following
result.

THEOREM 5. Suppose that (2.1)—(2.4) hold and let h be a complex
sequence. Then the following are equivalent :

(1) Zi-oar(Ah), converges;

(ii) v=0 PP(0)(Ah), converges for j=0,1,2,--,

(iii) 2i-o Pi(z)(Ah), converges for all z in some uniqueness set for

@i, P2, ", Pas
(iv) Z%-o P (z)(Ah), converges uniformly on compact subsets of ).

Proof. We first show that (i) and (iii) are equivalent. Using
Lemma 2 and (2.4), choose points z,, z,, - - -, z, in ) such that the matrix
(¢;(z)), 1 =], k =d, is invertible. In proving that (i) implies (iii) we can
take {z,, -, z;} as our uniqueness set; for the reverse implication we
will suppose that z,,- - -, z, are chosen from some arbitrary uniqueness

set.
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Define

[ P.(z)) :I
ukz‘-P“((Zd) a;l, k:0’192’.“7

rq)(zl)]
u=Lo@)d |

and let v, = &, (Ah),. Then u is invertible, {u, }; converges to u, and (iii)
holds if and only if =§ v, converges. Note also that i, is invertible
for k sufficiently large, and we suppose without loss of generality that
this is true for all k. By Lemma 1, then, we can prove the equivalence
of (i) and (iii) by showing that

kE—O ” Uy — Uy ”G < o,

For 0=k <«, we have

d

“ Uy — Uy “G = Z ; I(PkH(zl Yaiti— P(z)ai") l

i=1

d
=d D |P(z)ait— Pzt |,

t=1

and thus

® d £
Z e — e o = d 21 2 [P.(z)a? = Pey(z)ail, <.

We now prove that (i) = (iv) = (il) = (i). Thus suppose that
25 ai(Ah), converges and define Q,(z), 0=k <, as in (3.5). Then

(3.6) 3 P@0n, =3 {3 Q@) b

k=0 \j=0

©

Q,(2)ex (AR, = Z)Q,-(Z){i Ah)k—Elak(mk}

k=n+

H

2

II

o n ©

2 (AR, ~; Q(2) kEH a, (Ah),

!I

i

g (@) 2 ah) ~(Pu(2)ar) 3 arAh)
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Let € >0 and choose an integer N >0 such that j =N implies
|Z%-;a(Ah) |, <e. Then n =N implies

n

3.7 >

i=0

Q@)(2 wn))

k=j

N-1
=2
i=0

Qi(2) <i a (Ah )k)

k=j

+de 3 Q@)

Since P,(z)a' converges to ®(z), the last term in (3.6) converges to
0. Combining this with (3.7) we see that Z;_, P,(z)(Ah), converges
uniformly on compact subsets of (). This proves that (i) = (v).
The implication (iv) = (ii) is obvious, so there remains only to
show that (ii) = (i). Choose, via Lemma 2, integers j,,j,, - - ,j; such

that the matrix
4o
[0
(I)(id) (O)

is invertible. Let

_| B0
W =1: ai', v = a(Ah),, k=0,1,2,---,
P‘((Jd) (O)

and note that (ii) implies that 37w, converges. Moreover, {u};
converges to u, u, is invertible for k sufficiently large, and we may again
assume that , is invertible for all k. To show that 27 v, converges, we
use Lemma 1. First, the convergence of

2 PP Oai = P2 Oaiil,  0=j<e,
follows easily from (2.2). Now observe that

d d
”uk+l — Uy "G = Zl Zl I(Pﬁ(]ll (0)0;11 _Piji)(o)ail)z l

d
= d 2 |PO)ait ~ PEOai ],

so that
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o d o0
,(Zo e — welle =d D D |PEAOa — PEO)a ]|, <o,

i=1 k=0
and this completes the proof of the theorem.

Proof of Theorem 2. Suppose y = Bh for complex sequences y
and h. Since h belongs to the domain of B, Theorem 1 implies that

Zi-ohpi (z) converges uniformly on compact subsets of 3. Let f(z) =
-0 p(z). Then

f90) = 2 hp ((0) = Z Bk =(Bh), =y,

0=j<oo.
In the other direction, if

= @
> V5= 2 hpe(2),
=0 ] K=o
then differentiating this equation m times and setting z =0 yields
Yn = 2 pi(0) = (B,

so that y = Bh.

Proof of Theorem 3. If h € %, then h belongs to the domain of
B. By Theorem 1, Z;_,ai(Ah), converges. By definition of the
sequences {S{}i.o, 1 =i =d, it follows that each of the series

© d
SN S hgeas, 1Si=d,
k=0 j=1

is convergent. To show that the series (2.5) all converge, it suffices to
show that, for fixed j, 1 = j = d, and fixed i, the terms S}, g+, — 0 as
k—>wo. As in the proof of Lemma 3, let x, =27, a;(Ah), k=
0,1,2,---. Then (Ah) = ai'(xy — xi0p), 0=k <o, and

Ismﬂ'vl hkdﬂ'-—ll = t(ak )ij ((/\h )k )j !

= [(a)s | [|(AR),

T l(ak)ii I Hal’(xk — Xk+1)

r

=d ool flo llxe = xiel-
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Since {x, —x,..J; converges to the zero vector, the desired result

follows.
If each of the series (2.5) converges, then each of the ‘“‘grouped
series”

o d

(i)
2 E Skd+j—1hkd+j‘l
k=0 j=1

converges. Therefore 2§ a,(Ah), converges and Theorem 1 implies
h e .

Proof of Theorem 4. Let n be a nonnegative integer and write
n=md+i, 0=i<d Then

o

Af). =D Sih.
d

k=m

If ||- | denotes the supremum norm on ¢,, then
N S(i+1) h l }
k;nd k «

2 (o 7% ()\h )k

k=m

|Af|l.= sup {xoggg

0=m <o

= sup

0=m<oeo

=1

Thus A is an isometry. Since A maps & onto all of ¢,, it follows that %
is a Banach space.
Let f € #, with

T

G.7) f2)= 2 hp. (2).

For each positive integer n, write n = jd +1i, j =0, 0=i <d. Then

f@) =3 k@) = | X hpi2)
=Ssup i a (AR, ,

mzj

and this last expression tends to 0 as n — . Thus (3.7) converges in
the norm ||-||. From the uniqueness condition (2.7), it follows that {p, };
is a basis for Z.
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