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For every real r =0, there is a sequence {b'’} defined by
(N by’ =1, ‘,.'lx—l—[ b"”+r for n=0.

These sequences were considered previously, in [1], for integer
values of r, and it was shown that there is a constant 4 = 0(r)

such that

(2) Wi~ 07, n—ow,

for each r =1,2,3,---. It was observed that
(3) B=2"+1, nz=0,

whereby 6(2) =2, and the problem was proposed “to determine
the algebraic or transcendental character of the real numbers
0(r) for r =1,3,4,5,6,-

In this paper, we observe expllcltly (in $1II) that

4) b =7"4+7""42, n=1,

where 7 =(V5+1)/2=1.618--- is the “Golden Mean”, and
thus 6(4) = 7= (V5+3)2=2.618---

Moreover, we extend the result (2) by showing, for every real r >0,
there is a real constant 6 = 8(r) > 1 such that

. w1
(5) bn+l 0 +2+8

r(r=2)07+0(0*"), n-—oowo,
Thus for r#2 the sequence {8} ={b\" —(r/2)} differs from the se-
quence {#”'(r)} by an amount which approaches 0 exponentially as
n — . The case r = 4, described in (4), is illustrative of this behavior,
while the case r =2, described in (3), is exceptional in that the error
term is identically 0.

Forr=0,bY=BY=1forall n =0, so that 8(0)=1; and 6(r) is a
continuous, monotone increasing function of r 0.

The basic tool used in treating the general case is a new theorem in
function theory ($III), which is ideally suited to the study of sequences
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generated by nonlinear (and especially polynomial) recursions. The
function-theoretic approach also reveals (§V) an unexpected connection
between the class of nonlinear recursions considered here, and the
enumeration problem for rooted trees.

II. The case r = 4. We observe that r’=G3+ V5)/2 and
r2=3-V5)2. Thus r?++*=3=p¥-2= B{. Setting r =4 in
(1), we see

n—1

biti=b-I] b +4=bP(bP -4 +4= (b -2,

i=1

The general identity

(6) bP=1"+77"42, n=zl

is established inductively by

V) b‘,.“i. =bP-2=@"+r"P=7""+77" 42,
since we have already verified (6) for the case n = 1.

III. A function-theoretic approach. The behavior of b}
as n — o will be elucidated by means of the following.

TueoreM. For |z|= R >0 let p(z) be analytic, and let |p(z)|=
A|z|, where A > 1. Then there is a unique positive integer, m, a unique
complex constant, ¢ #0, and a unique function, f(z), analytic and
nonzero for |z|> R, such that f(z)=z as z —>, and such that

(8) fp(2)) = c{f)}".

Proof. Since p(z)—> > as z— o, this function has a pole at
infinity. If the pole is of order M:

p(z)y=Cz™ as z-—x,

and if a functional equation of the form (8) holds, then since f(z) is
required to be =z at =, we conclude that ¢ = C and m = M.

Let the unknown function f(z) be represented by f(z) = z exp ¢ (z)
where ¢(z)—0 as z —>o. The functional equation (8) now takes the
form

p(z)expe(p(z)) = cz™ explme(2)]

which is true if
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©) 0(2)=a(2) + - ¢ (p(2)

where mq(z) is the logarithm of p(z)/(cz™) which tends to zero as
Z—> 0,

A solution of the functional equation (9) can be found by the
method of iteration. Let ¢¢(z) = q(z), and define ¢,(z), ¢,(z), - by

(10) o= 4D+ o (p(2) (=01,

Since |p(z)|=Z A|z|>|z|, all the functions ¢,(z) are analytic for
|z|= R. Since q(z) is regular and equal to zero at z = o, there is a
constant Q such that

(11) leo2)|=1q(2)|=Q/]z| (|z]zR).

We can now prove by induction that, for n =1,2,:- -,

(12) e (2) = @)= QIA" |z ]).

For n =1, we deduce from (10) and (11)
o) = 02| = eup @) == QIlp(2)| = QUA 2.
For n > 1, we have
fr(2) = (1) = - {0 (P (2D~ 6, (P (D)}

Assuming (12), we find
|@nsi(2) = @u(2) | S QA" |p(2)) = QIA™|Z]).

This completes the inductive proof of (12).
We now conclude that ¢,(z) tends to a limit as n — o, namely

lim ¢4(2) = 9u(2)+ 2 {6a(2) = 0 i)} = 0(2)

since the infinite series is dominated by (Q/|z|)2X A™ <. The con-
vergence is uniform for |z|= R. Therefore, the limit, ¢(z), is analytic
for |z|>R.
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It remains to prove that there is no other function, ¥(z), analytic
for |z| > R, with () =0, such that

(13) V(@) = 4(2) + - b(p(2)).
Let ¢(z)—¢(z) = w(z). Then (9) and (13) imply
(14) w(z) == w(p(2)).

If w(z)#0, then w(z)=Wz ™~ as z—>», where W#0 and N is a
positive integer. Then (14) implies

Wz""’z;nL W(p((z)™ as z—ow

which is absurd, since m = 1 and |p(z)/z|= A >1. This completes the
proof of the theorem.

IV. Application to the quadratic recursion. Keeping
r >0 fixed, we define B, = B’ = b~ (r/2). Then (1) implies

(15 Busi=PBi—p, where p=r(r-2)/4, n=1,2,3---

Then B,— because B,=1+3r if n=1, and hence, B, =
B. +r. Define

(16) p(z)=z"—p.

Then (15) takes the form

(17) Buii=P(Br) (n=1,2,---).
If A>1, then
(18) lp(2)|=|z’-p|z|z’|-|p|zAlz| if |z]ZR

provided that we define
(19) R=4(A+(A*+4[p|))

since this is the positive root of R*—|p|= AR.
According to our theorem, there is a unique function of the form
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c
20) f(z)=z+c0+?'+---(]z|>R)

such that, if p(z)=2z>+---, then
Q1) fp(2)) = {f(z)f for (|z|>R).
Since p(z)=2z’—p is an even function of z, f(z) must be an odd

function of z in order to satisfy (21), and only the ¢; with odd subscripts
need be retained in (20). For all n =3, we have

/3,,>Bz=l+%r.

Moreover, since r >0,

Bi-lpl=1+3r+3r—tr|r-2|

>1+

[\ JRVS]

rzﬁz.

Define A as any number satisfying

22) 1<A <'B§_;_3LP_I

and define R by (19). Then the last inequality implies B,> R, and
hence B, >R for all n 2. Hence, for n =2, (17) and (21) imply

f(Bus) = f(p(B.) ={f (B}

Therefore, if n =2,

(23) f(B.) =0~

if 6 is the positive number defined by f(B,) = 0*. Since B, —>x, we
have 6 > 1.

The continuity of 6(r). If r ranges in any interval r,=r = r,, then
there is a constant A, independent of r, satisfying (22). Then the
sequence of iterates ¢,(z) defined by (10) converges uniformly in z and
in r, and ¢,(z) depends continuously on the parameter r. Hence,
limg,_., ¢,(z) is continuous as a function of r; and f(z) depends
continuously on the parameter r. But we have just shown that
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o(r) ={f(B}"
2

Hence, 6(r) depends continuously on r.
For sufficiently large |z |, every function f(z) of the form (20) has an
inverse function of the form

F(w)= w+yo+y‘;‘+---
satisfying
F(f(z)) = z.
For the case p(z)=2z>—p, f(z) is an odd function of z, and the

inverse function of an odd function is an odd function. Applying F to
(23), we find, for all sufficiently large n,

(24) Bn —_ F(GZ") — 02" + y)0~2" + 730*}2" 4

The coeflicients in the power series for f(z) and F(w) can be
calculated recursively. Formula (21) yields

p(z)+ p(Z) pgzlz) <Z+%+%”)z
from which
z? Pt _p+---=zz+2c,+(2c3+c§)z‘2+~-
Therefore,
25) = o= —RRED g

For the inverse function, we must have

=(z+cz ' tez7+ ) tylz+e) 4

Hence
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-2
Y= —C.=§=r(r8 )

o a_ pp=2) (rAt2r(r=2)(r—4
(26) V= TGOS g 128

etc.

Now (24) yields, for n — o,

27 B. =07 +-§ r(r—2)07" + 0(87%).

If r =2 or r = 4, the preceding sections have shown that 8, has the
exact form

B, = 0" + r(r8— 2) 9

and
1

b, = 6% + %+§ r(r—2)07".

Conversely, it is easily verified that, for r >0, and expression of this
exact form can satisfy (15) only if r =2 or 4. In fact, the only real
values of p which lead to this exact form are p =0 and p =2.

We remark that the inverse function, F, satisfies a functional
equation. Letting z = F(w) in the identity

f(p(2)) = cl{)}"
yields
f(p(F(w))=cw™

Applying F to both sides now yields
p(F(w))=F(cw™).

In our application, we have the identity

(28) Fw)—p = F(w?.

The coefficients in the power series for F(w) can be calculated directly
from this equation.
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The algebraic character of the constant, 6, depends on the nature of
the function f(z). If r is a positive integer, then 8, is an integer or a
half-integer, and

0= {f(Bz)}%-

Thus, 6 is algebraic if f(z) is algebraic over the field of rationals. In the
known cases,

f(z)=z if r=2
f(z)=4[z+(z?—4)y] if r=4

since these are the functions whose inverse functions are

Fw)y=w if r=2
Fw)y=w+w™' if r=4.

Unfortunately, only p =0 and p =2 lead to functions F(w) with
finite expansions in w.

V. Coefficient relationships. In the previous section, we
considered the functions

(29) fz)=z+cz'+cz+csz+ -
and
(30) F(W):W+y1w"+y3w*3+ysw—5+‘..
where

F(f(z)) =z,
Gh f(z’~p)=f(z) and

FXw)—p = F(w?).

In this section, we shall assume only that p is a real number, and derive
certain identities involving the coefficient sequences {c,} and {v:}.
From (29) and (31), we obtain

(32) i Ckuk x 2m+1
—_— = CiCom-iU™
oddito (1= pu)t mZ-I oddjz=4 e

where for convenience we have set ¢_, = 1.
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We rewrite (30) using t = w ™' and g; = y_, to obtain
(33) FQ/t) =%+ S

where we have set g, = 1.
Then from (31) we find

Chzg ds= —q1q4.— q:q;

= —qiqs— q2q.— (%”)

=
|
[
TN
R
Sa—
K
EN
|

q;:= — q.q> q:= —qi1qde— (4245~ (4344

q:= —qqu—(2> qs= —q,q7~qzq6—q3qs-(%“>

and in general

1-1
G = — 2, QGa-1-s 1 >1
izl
(34)
q’ 1-1
q21= —<2>—2‘ qiqu—i, l:—>_].

The assertion that the expansion for F(w) is finite only in the cases
p =0 and p =2 is proved as follows. Suppose

(35) Fowy=w+Dpdp gy n>,

where g, is the last nonzero coefficient. From F(w?) +p = F¥(w), we
see that q.= q., so that q, = 1. Next, q,, =0, because 2q,_, is the
coefficient of w ™ in F*w), but the corresponding coefficient in
F(w?) is 0. The next coefficient identity. examining w “"*_ is g, , =
2g,..+ g2, but since g, =0 we get g,.-=0. and proceeding induc-
tively, we find g, =0 for all ii1=i=n-1. However, F(w)=
w + 1/w*~' fails to satisfy the functional equation for all n >1. The
cases F(w)=w and F(w)=w + 1/w are the unique solutions of the
functional equation for n =0 and n = 1 respectively.

Other than for p = 0 and p = 2, no cases of “well-known’” functions
have been found as either f(z) or F(w). However, the case p = —2
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turns out to be of considerable combinatorial interest. The recursion
equations (34), starting with p = —2 and g, = — 1, generate a sequence
of integers {g,} such that {—q,} ={1,1,1,2,3,6,11,23,46,98, - - -}, where
it is easily seen (1) that —q, is the number of distinct “binary coding
trees” with i = 1 interior nodes and i terminal nodes, where there are
always two edges leading down from each interior node (see Figure (1);
and (2) that —q; is the number of binary rooted trees with i nodes
altogether, and at most two edges leading down from each node (see
Figure 2). Indeed, the second set of trees is obtained by pruning away
all branches leading to terminal nodes in the first set of trees. A
recursion strikingly similar to (34) occurs in yet another tree enumera-
tion problem [2].

ER Ry M
) A

i=7

A

H

A

FiGURE 1. The “binary coding trees” of order i, 1 =i =7.



A FUNCTION-THEORETIC APPROACH 465

m=1 m=2 m=3 m=4
® r'T—’\ﬂ —

1 TR

A

L
M

Il

m

?

[

T

FIGURE 2. The ‘“binary rooted trees” with m =i —1 nodes, 1=m =7.

Let f(z) satisfy (29) and (31). Then equation (32) can be solved to
obtain the following recursion relation for the coefficient sequence
{€yi+1}, starting with ¢, =1:

2i~-1 1 : _1 »
(36) 2050 =— 2, CCu;+ c,('. _ 1) p'.

oddj=1 oddj=1 J

Thus, if i even,

i—1 1—1 ;o l .
(37 Crivi = — 2 CiCai-j +1 Z Cj<l ) p',
oddj=1

oddj=1 j_l

while if i odd,

B i-2 A i—1\ .
(38) Cri1 = — z CiCai-j — 0 +2 Z G\ . p

oddj=1
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Equivalently:
2i—1 i—1 i _ 1
(39) 2= = % et 3 ()
oddj =1 m=0 m
(i—m odd)
Thus, if i even,
i1 1 i1 i—1 n
(40) Coriv1 = — z thCZi—j"—i z < m )ci—mP ’
oddj=11 oddm =1

while if i odd,

i-2 ) i1 -
41 Crivi = — Z CiCai—j — (;’) +3 (l 1) Ciomp ™.

oddj=1 nm=2

Explicitly:
Cl = _g
-(3)
2

c
Cs= —c,c3+—~2'B

I

Cs

2
C7= “C]C5“(%>+C_12&

3
42) co= —cic;— cscs+ﬁg%3&2

= — 1= CaCo— cres+ S0F 10623p"+ Scsp
Cis= —C1C13— C3€C;; — CsCo— (37>+ cip’t 15Cg)4+ 15¢5p”
Crn= “C1C15—63C13—c5c”—c7c9+Clp7+21C3P5+3565p3+7c7p

2

etc.
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V1. Asymptotic ratios. Define G(u) from (33) by
(43) Gu)=uwF(u™=1+qu+ qu*+ qsu*+qu*+---=> qu'.
i=0

Suppose there is a limiting ratio R =lim;_..(q:+,/q;). Then it is well
known that the radius of convergence of the power series (43) for G (u)
is 1/|R|. Therefore the series (30) for F(w) converges for |w|>|R?|,
diverges for | w | <|R?|, and may converge for some (or all) of the values
of w with |[w|=|R?|. By (34), if p is real, then all the g; are real, and R
is real, R = =|R|.

From (34) we have

“Gm1 = Qi Gm * Q21+ 3Gt -,

and therefore, for large m, dividing by ¢, yields

(44) R+q+L4+d, 9, ... — RIFRY) =0,

provided that R* is a point of convergence of the series (30) for
F(w). In this case, invoking (31), we find:

F(R)=FRY)—p=—p
(45)
R=f(—p)= —f(p).

It would be interesting to determine the domain of values of R for
which (45) holds. Within that domain, (45) can be used in the practical
computation of R. For example, when p = —2 in (42), we find:

C;zl, C3=0, C5=_1, C7=1, Cg:_s, C!]=12,

cn=—22, ¢s=19, ¢,,=68,---
The limiting ratio R of the sequence

{—aq}=1{1,1,1,2,3,6, 11,23, 46,98, 207, 451, 983, 2179, 4850, 10905, - - -}
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of the number of binary coding trees is then given by (45) as

_ _s v v s 12 22 8.
R=fO)=2+3-53+ 157 51272048 g192~ ~— 2470~

which is in good agreement with the empirical value.

From (34), for p <0, all the g,’s are negative, while for p > 2, the
q.’s precisely alternate in sign. For 0 < p <2, the sign behavior of the
g:’s is considerably more intricate, and is not the same throughout this
interval. The relation F(w)—p = F(w?) is sufficient to insure the
convergence of F(w) at w =|R?| provided that |R | < 1 and that the g,’s
become and remain, for large i, either all of the same sign, or strictly
alternating in sign. This sufficient condition can be restated entirely in
terms of the value of p: F(w) must converge at w =|R?| for all
p <p,= —0.43, and for all p > p,=2. Whether this condition is also
necessary has not been determined.
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