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ON BURNSIDE’S OTHER p<‘q®" THEOREM
G. GLAUBERMAN

Suppose G is a finite group whose order is divisible by only
two primes. Burnside’s famous theorem asserts that G must be
solvable. In a less famous theorem, Burnside gave sufficient
conditions for G to have a nontrivial normal p-subgroup for a
particular prime p. However, this theorem does not apply in
certain cases when G has even order. In this paper, we prove
an analogue of this theorem which applies to all cases.

1. Introduction. The “less famous” theorem [2], as opposed
to the “famous’ theorem ([5], page 131), states the following.

TueoreM (Burnside). Suppose |G | = p°q® for distinct primes p, q
and nonnegative integers a,b. Assumethatp® > q°®. Then O,(G)# 1,
except possibly in the following cases:

(1) p=2and q is a Fermat prime;

(2) q =2 and p is a Mersenne prime.

Burnside gave examples to show that the cases (1) and (2) must be
excluded. (See also §5 of the present paper.) In this paper we prove
an analogue of Burnside’s result that covers all cases. To do this, we
require a definition. For each finite group G, let ¢(G) be the maximum
of the orders of the nilpotent subgroups of G having nilpotence class at
most two. Then we obtain the following result.

THEOREM A. Suppose p and q are distinct primes, G is a finite
group, and |G| = p°q"® for some nonnegative integers a,b. Let S be a
Sylow p-subgroup of G and T be a Sylow g-subgroup of G. Assume
that e(S)>e(T). Then O,(G) # 1.

A typical application of Burnside’s Theorem is the statement that if
p and g are odd and |G|=|G*|=p°q®#1, then we cannot have
0,(G)=1 and O,(G*)=1. Theorem A yields a similar corollary.

CoroLLARY 1. Suppose p and q are distinct primes, a and b are
nonnegative integers, and G and G* are finite groups of order
p°q’. Assume that G and G* have isomorphic Sylow p-subgroups and
isomorphic Sylow q-subgroups. Suppose G# 1 and O,(G)=1. Then
O0,(G*)#1.
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Theorem A follows from the following results.

THEOREM B. Suppose G is a finite group, A is a nilpotent sub -
group of G of nilpotence class at most two, and |A|=e(G). Assume
that A normalizes a nilpotent subgroup Bof G. Then AB is nilpotent.

COROLLARY 2. Suppose m is a set of primes, G is a finite -
solvable group, and O,(G)=1. Then 7 contains every prime divisor of
e(G).

CoROLLARY 3. Suppose p is a prime, G is a finite p-solvable group,
and O,(G)=1. Then e(G) is a power of p.

COROLLARY 4. Suppose G is a finite solvable group. Then the
prime divisors of e(G) are the same as the prime divisors of |F(G)|.

Theorem B is an analogue of the following result (Proposition 1) of
[1}: Suppose G is a finite group, A is an Abelian subgroup of G, B is a
nilpotent subgroup of G having an Abelian Sylow 2-subgroup, and A
normalizes B. Assume that |A | is the maximum of the orders of the
Abelian subgroups of G. Assume also that either |A| is odd or B is
Abelian. Then AB is nilpotent.

Burnside’s Theorem was applied in §21 of [3] in order to construct a
Hall 7-subgroup in a group possessing a Hall {p, q}-subgroup for every
pair of primes p, q € w. A similar application appears in §7 of [4]. In
§4 we state an analogue (Corollary 5) of an argument used in these
applications.

All groups in this paper are assumed to be finite. Most of our
notation is standard and is taken from [5]. In addition, for a group G
we define ¢(G) as above and define B(G) to be the set of all nilpotent
subgroups of G of order e¢(G) that have nilpotence class at most
two. We also write “H# G” to indicate that H is a subgroup, but not a
normal subgroup, of G.

2. Nilpotent automorphism groups.

ProposiTION 1. Let p be a prime and V be a nonidentity elemen -
tary Abelian p-group. Suppose A is a nilpotent p'-group of au-
tomorphisms of V having nilpotence class at most two. Then |A|<

V.

Proof. Use induction on | V|.
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We regard V as a vector space over GF(p) and A as a group of
linear transformations of V over GF(p). Suppose first that V is
reducible under A, say, V=V, PV, Let A,=A/C,(V:)). Then, by
induction, |A; | <| V.| for each i. So,

A |=]A A <| V|| V2] =] V].

Now assume that V is irreducible under A. Let C be the
centralizer of A in the endomorphism ring of V and let F be the subring
of C generated by the elements of Z(A). By Schur’s Lemma
(Theorem 3.5.2, page 76, of [5]), C is a division ring. As F is
commutative and contains 1, F is a finite integral domain. So F is a
field. Let us regard V as a vector space over F and A as a group of
linear transformations of V over F. Define

q=|F| and d=dim;V.
Since Z(A) is a subgroup of the multiplicative group F — {0},

2.1 Z(A) is cyclic and |Z(A)|=q — 1.

Assume first that, for each prime r, every Abelian subgroup of
O,(A)is cyclic. By Theorem 5.4.10, page 199, of [5], O,(A) is a cyclic
group or a generalized quaternion group for each prime r. As A has
nilpotence ‘class at most two, O,(A) is a cyclic group or a quaternion
group of order eight. Hence A =Z(A) or |A/Z(A)|=4. If A=
Z(A),then (2.1) yields that |A |<q =|V|. If|A/Z(A)|=4,then Vis
not one-dimensional and, by (2.1),

q=|Z(A)|+1=3 and |A|=4|Z(A)|=(@q@+1)(@-1)<q’=q"*
=|VI.

Now assume that O,(A) has a noncyclic Abelian subgroup for
some prime r. Since O,(Z(A))=Z(0,(A)),

2.2) r divides |Z(A)|.

By (2.1), O,(A) contains an element g of order r that lies outside
Z(A). Let B,=(g,Z(A)). Then

(2.3) B, is Abelian but not cyclic.
Since B,D A’, B,< A. Let U, be an irreducible B,-submodule of V

over F and let V, be the sum of all the B,-submodules of V over F that
are isomorphic to U,. By (2.3),
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Co (V) = Cp(U) # 1.

As A acts faithfully on V by hypothesis, V# V,. Since B, <JA and A
acts irreducibly on V over F, Clifford’s Theorem ([5], page 70) asserts
that there exist some natural number n and some B,;-submodules
V, -+, V, over F such that

V = Vl@...éBVm

A permutes V-, V, transitively, and C,(B,) fixes V,,---, V..

Let B=C,(B))and K = Cg(V,). Since Q(O,(B))=Z2Z,XZ, B, =
0(0.(B)))Z(A), and A is nilpotent, it follows that A/B =Z,. Hence
n=r and A/B acts regularly (and faithfully) on V,,---,V,. Take
x €A - B. Then (x) permutes the subspaces V; transitively. So
Ck (x) acts trivially on all of them, and

(2.4) Ck(x)=1.
Since K <4 B, (2.4) yields that
(2.5) [B,KICKNA'CKNZ(A)=1 and K CZ(B).

Take any y € K. Let z =[y,x]. Then

X r

yi=yz, yU=yzteoy =yt
By (2.5), y =y =yz". Thus

(2.6) foreach y € K, [y, x1€ Q(O.(Z(A))).

Now define a mapping ¢: K —>Q,(0,(Z(A))) by ¢(y)=[y,x]. An

easy calculation shows that ¢ is a homomorphism. By (2.4), ¢ is one-
to-one. Hence

|K|=|Q(0.(Z(A)))|=r.

Let ¢ =dimzV,. Then d =cr. As B/K acts faithfully on V,,
induction yields that

IBIK|=|V,|-1=¢q°—1

Therefore,
2.7 |A|=]A/B||BIK||K|=r¥qc—1).

By (2.2) and (2.1),
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(2.8) rsq-1=q°—-1.
If r=2, then (2.7) and (2.8) yield that
[Al=4(g - D=(q + (g —-D<q*=q'=|V].
If r>2, then (2.7) and (2.8) yield that
|A|=(@ - 1P<q*=q'=|V].
This completes the proof of Proposition 1.

3. Proof of Theorem B. To prove Theorem B, we assume
it is false and derive a contradiction. Assume that G, A and B are
chosen to violate Theorem B in such a way that |G |+ | B | is as small as
possible. Most of our proof follows the proof of Proposition 1 of [1].

Clearly, G = AB. Take a prime p such that O,(A) Z F(G). Then
0,(A)O,(B)4 G. As A normalizes O,(A)O,(B), B does not. Take
a prime g such that O,(B) does not normalize O,(A)O,(B). Then
[0,(A),0,(B)]#1. Therefore, AO,(B) is not nilpotent. By the min-
imal choice of G and B, B = O,(B). Let A, = 0,(A), A*=0,(A),
V = B/®(B).

Now, V =C,(A*) X[V, A*] (by [5], page 177) and A* does not
centralize B. By Theorem 5.1.4, page 174, of [5),
[V,A*]1#1. Consequently, the minimal choice of G and B yields that
A* centralizes ®(B), that Cy(A*) =1, and that A acts irreducibly on
V. Hence

3.1 Cs(A*)=d(B)
and, by Theorem 3.1.3, page 62, of [5],
(3.2) A, centralizes V.

Since V =[V, A*], we have B =[B, A*]®(B). By a basic property of
the Frattini subgroup ([5], page 173), and by (3.1),

(3.3) B=[B,A*] and Cs;(B'’)D2(A*|g€G)D[B,A*]=B.
By (3.1) and (3.2),
[[A, B], A*]C[®(B),A*]=1=[1,B]=[[A* A,], B].

By (3.3) and the Three Subgroups Lemma ([5], page 19),
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(3.4) 1=[[B,A*],A,]=[B, Al

Let A =A/Ci(B) and C = BC,(B). Then A is a q'-group. By
Theorem 5.1.4, page 174, of [5], A acts faithfully on V. By Proposition
ls

(3.5) |A|<|V].
By (3.3), B'C Z(B). Since C' = B'(C,(B)) CZ(C) and A € B(G),
|A|=|C|. By (3.1) and (3.5),
|A|=|C|=|BCy(B)|=|B/(B N Cs(B))||Ci(B)|
= |B/®(B)||Cs(B)|=|V||C.(B)|>|A]||Cs(B)|=|A

)

a contradiction. This completes the proof of Theorem B.

4. Proof of remaining results. We now apply Theorem B
to obtain the other results mentioned in the introduction.

For Corollary 2, let H = 0,(G) and take A € B(G). Then A
normalizes H and C;(H)C H, by Lemma 1.2.3 of Hall and Higman
(Theorem 6.3.2, page 228, of [5]). Therefore, AH is a group. Since H
is solvable, AH is a solvable. Since

[0.(AH),H]|CO,.(AH)NH =1,

O.(AH)=1. So F(AH) is a w-group. By Theorem B, AF(AH) is
nilpotent. Hence O, (A) centralizes F(AH). By Theorem 6.1.3, page
218, of [5],

Can(F(AH)) C F(AH).

So, O,(A)=1. This proves Corollary 2.

Corollary 3 is a special case of Corollary 2.

To obtain Corollary 4, let = be the set of all prime divisors of
|F(G)| and let o be the set of all prime divisors of ¢(G). Then
F(O,(G))CO,(F(G))=1. Hence O,(G)=1. ByCorollary2,c isa
subset of w. Take A € B(G) and let Z = Z(O,(F(G))). By Theorem
B, AZ is nilpotent. Therefore, AZ=A XZ. Bythechoiceof A,A D
Z. Thus Z=1. Consequently, O,(F(G))=1 and o = 7.

Corollary 4 yields that, if O,(G) =1 in Theorem A, then e(G) is a
power of q. But then, by Sylow’s Theorem and the definition of e(G),

e(G)=e(T)<e(S)=e(G),

a contradiction. This proves Theorem A.
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Theorem A easily yields Corollary 1. However, the following
result generalizes Corollary 1. Note that it is not trivial if k = 1.

CorOLLARY 5. Suppose p and q are primes, a and b are nonnega -
tive integers, and G,,---,G, are nonidentity finite groups of order
p°q®. Assumethat G,,- - -, G, have isomorphic Sylow p-subgroups and
have isomorphic Sylow q-subgroups. Assume also that the notation is
chosen such that

e(0,(G)) = max{e(0,(G))|r =p,q;i=1,2,---,k}.

Let S be a Sylow p-subgroup of G,. Suppose that 1 =i =k and
that ¢ is an isomorphism of S onto a Sylow p-subgroup of G.. Then

0,(G)NP(0,(G)) # 1.
Proof. Set
T=0,(G), S*=¢(S), T*=¢(T), and Q =0,(G).

Then S* normalizes T* and T* normalizes Q. Since G, #1, e(T)>
1. By hypothesis, e(T)=e(Q). Hence

e(T*)=e(T)>e(Q).
By Theorem A, O,(T*Q)# 1. Since S* normalizes T*Q,
1# O0,(T*Q) <1 S*.

Let U = 0,(T*Q)N Z(S*). Then
4.1 U#1 and UCT*=¢(0,(G)).
Since [U, Q] C O,(T*Q)NQ =1,
“4.2) U centralizes Q.
By Theorem 6.3.3, page 228, of [S], U CZ(S*)C O,,(G;). By (4.2),

Co(U) 2 Q(0,,(G) N §*) = O, (G).

Therefore, U C O,(0,,(G;)) C 0,(G)). By (4.1), this completes the
proof of Corollary 5.
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S. Examples. The following examples, suggested by Burn-
side’s examples, show that the Burnside Theorem cannot be extended to
cover the excluded cases (1) and (2).

ExaMpLE 1. Let q be a Fermat prime and V be an elementary
Abelian group of order g°>. Then Aut V contains a Sylow 2-subgroup
A of order 2(q — 1), and

|[Al=2(q-1)>q*=|V]|.

This shows that Proposition 1 cannot be extended to allow A to
have arbitrary nilpotence class. By letting G be the semi-direct
product of V by A, we see that Burnside’s Theorem cannot be extended
to cover case (1).

ExampLE 2. Let p be a Mersenne prime. Let 2" =p +1 and let
V be an elementary Abelian group of order 2. Then a few calcula-
tions show that

|Aut V|, Z|GL(p,2")|, =p**'>|V].

Consequently, we obtain an example analogous to Example 1.
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