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Let R be a commutative ring, I an ideal in R, and A
an R-module. We alwayshave 0 S 0SS TN, I"A S N3 "4
where S is the multiplicatively closed set {1 —4|i€I} and
C=0nNA={acAl|aseSssa=20}. It is of interest to know
when some containment can be replaced by equality. The
Krull intersection theorem states that for R Noetherian and
A finitely generated IN3.; " A = N3-. ["A. Sinece N ;- I"4
is finitely generated, N3-. I*A = 0°. Thus if I S rad (R), the
Jacobson radical of R, or R is a domain and A is torsion-
free, we have 7., I"A = 0. In this note we show that for
a Priifer domain R and a torsion-free R-module A, IN; ., ["A =
.. I"A. We also consider the condition (x); M3-.I* = 0 for
every ideal I in the commutative ring R. It is shown that
a polynomial ring in any set of indeterminants over a Noe-
therian domain and the integral closure of a Noetherian
domain satisfy (x).

Let R be a ring and A an R-module. If xe R and 2¢ Z(A), the
zero divisors of A, then (x) Ny ()" 4 = Ni-. (x)"A. Actually we can
take I to be invertible and A torsion-free. However, the assumption
x ¢ Z(A) is essential. For example, let p € R be neither a unit nor a
zero divisor and let F = Rx @ (33, Ry;) be the free R-module on
{z, ¥, Y, +++}. Let A = F/G where G = (z-py,, 2-p*Y,, -+ -); it is not
difficult to see that (p) Ni=.(»)"4 = N~ (p)"A. TUsing this result,
one can show that the following are equivalent: (1) dim R =0, (2)
for every finitely generated (principal) ideal I and every R-module A,
IN. I"A =N I,A. The first theorem gives another affirmative

case.

THEOREM 1. Let R be a reduced ring and let I be a finitely
generated ideal with rank I £1. Then (Yoo, I =1 I*. If R s
quasi-local or R is a domain, then Ny, I" = 0.

Proof. First suppose R is a domain. By localization we can
assume V1= M the maximal ideal of R. If B= .. I # 0, then
VB = M, so there exists an integer m such that I < B. Then I™ =
It which implies I™ = 0 by Nakayama’s lemma. Next suppose R
is quasi-local, by passing to R/P where P is a minimal prime we get

»  I"< P. Since R is reduced, we have My, [* S nil(R) =0. The
general case now follows by localization.

Another affirmative case is R a Priufer domain and A a torsion-
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free R-module. We first consider the quasi-local case.

LEMMA 1. Let V be a valuation domain, I an ideal in V, and
A a torsion-free V-module. Then tbe B = (7, I"A where icI and
be A implies i€ Ny, I" or be B. In particular, B = IB.

Proof. Suppose 7 ¢ (-, I", then there exists an integer N such
that 1€ I”* — I". Now tbeI™A for m > N implies ib = 775" Yq for
some j€l and a€ A. Now i ¢ I” gives j¥ = si for some se V. Hence
1b = st7™ Va 80 b = sj™ Yae I™ VA since A is torsion-free. Therefore
be B.

THEOREM 2. Let R be a Priifer domain, I an ideal in R, A a
torsion-free R-module, and B = (-, ["A. Then B = IB.

Proof. Let yeB and J = (IB:y); it suffices to show J = R.
Let M be a fixed maximal ideal; we show that JZ M. Now
yeBS By & M- IAy = I N, 1Ay by Lemma 1, so y = *(D/s)
where 7€l, be A, seR— M and b/secN;-. I A,. Let N be any
maximal ideal of R, then *b = sye BS N, ItAy so by Lemma 1,
1eN If or tbe Ny-, [}A. In either case, tbe Ny, [tA, for every
maximal ideal N of R, so tbe B. Therefore, seJ — M.

We remark that for a Priifer domain, (3., I” need not be a
prime ideal, but is always a radical ideal.

Consider the condition (x) on a ring. Local rings and Noetherian
domains satisfy this condition. The next two propositions are straight
forward and the proofs are omitted.

PROPOSITION 1. If Rsatisfies (%), then Z(R) < rad (R). Conwversely,
if R is Noetherian, then Z(R) < rad (R) tmplies ().

PROPOSITION 2. If R satisfies (), then R, satisfies () for every
maximal ideal M. If R, satisfies (x) for every maximal ideal M,
then N, I" = INZ-, I* for every ideal I in R. If Z(R) < rad (R),
then R satisfies (x).

The next theorem generalizes the Krull intersection theorem to
rings which are locally Noetherian.

THEOREM 3. Let R be a ring and A an R-module such that
w  PrAr =0 for every Pecspec(R), then -, I"A = 0° for every
1deal I in R.

Proof. Let T be the saturation of S={1—1i|iel}, so T =
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R— Usr,es P, where & = {Pespec(R)|PN T = @}. Then setting
B=Ny.I"A yields B, & Ny ItAr = 0 for every Pe.S”2 Hence
(T'B);—1, = 0 for every Pec ., but the T'Pec.5” are precisely the
prime ideals of T 'R. Therefore T'B =0, hence B, =0 and the
result follows.

The next proposition will be used to prove that a polynomial
ring in any number of indeterminants over a Noetherian domain
satisfies (x).

PROPOSITION 3. Let R be a Noetherian ring, I an tdeal in R[X],
and B= N, I". Then B= (BN R)R[X].

Proof. First suppose IN R =0, we show that B = 0. Suppose
0 = g(x) € B, by the Krull intersection theorem there exists a poly-
nomial f(x) = a@x™ + ..+ + a, €I such that g(x)(1 — f(x)) = 0. Since
1 — f(x) € Z(R[X]), there exists 0 # ce R such that ¢l — f(x)) = 0.
Hence 0 =ca, = +++ =ca,_, = ¢(a, — 1) so ¢ = ca,. But ca,=cf(x)e
INR=0 so ¢=ca, =0, a contradiction. For the general case, let
J = I"N R, passing to (R/J)[X] yields B& JR[X], hence B&E .-, (I"N
R)[X] = (BN R[X] < B.

THEOREM 4. Let R be a Noetherian domain and T = R[{X,}] a
polynomial ring over R in any set {X,} of indeterminants. Then
T satisfies (*).

Proof. We may assume the set of indeterminants is countable
and hence index it by the positive integers. By Proposition 2 we
may assume that (R, _#) is local and we only need show that (;-, M" =
0 where M is a maximal ideal in T with MNR= _#. Let K be
the algebraic closure of k({z;}) where {z,} is an uncountable set of
indeterminants over k = R/_#. There exists a local ring (B, N) with
B 2 R faithfully flat, N= _# B and B/N = K [1]. Now B> R faith-
fully flat implies MB[{X,}] # B[{X,}] so MB[{X,}]] & M* a maximal
ideal in B[{X,}]. It is sufficient to show My, M** = 0. Since

[B{X:}]/M*: B/N]

is countable and B/N = K is uncountable and algebraically closed,
B{X})/M* = K. Thus M*=(# X,—r, X, — 1, ---) for suitable
r,€ B. Since a given polynomial involves only finitely many indeter-
minants, it suffices to show Ny, (~Z£ X, — r, ¢, — 7,)" = 0 in B[X,,
e+, X,]. Since (#Z X,— 71, -+, X, — r)"NB[X, -+, X,,.1] = (A4
X, —7r, ooy Xpni— Tu-r)" the result follows from Proposition 3 and
induction.
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The last theorem gives another class of rings where (*) holds.

THEOREM 5. Let R be Noetherian domain and R’ its integral
closure. Then any ring between R and R' satisfies (x).

Proof. Let RS T < R’ be a ring, since T & R’ is integral, any
ideal of T is contained in the contraction of an ideal of R’, thus we
may assume T = R’. It suffices to prove the result for (R, M) a
local domain. Now RS RINS R/P.D--- DR/P,=(RIPYD--- D
(ﬁ/P,,)’ where R is the completion of RN=PNn-..-NP, and P,
..., P, are the minimal primes of . Now each E/Pi is a complete
local domain, so each (ﬁ/P,.)’ is a Noetherian domain and hence satisfies
(x). Every maximal ideal .# of R’ has the form .# = M*N R’
for some maximal ideal M* of (R/PY & --- @ (R/P,) [2, p. 119].
Hence M* = (R/PY @ --- D NG --- @ (R/P,y where N is a maximal
ideal in (R/P) for some 3. Then M, ~Z" = i (M*NR) S
(N2 M*)NE = LN R where I, = (RIPY @ --- DOD --- B (R/P,).
Suppose I, N R’ # 0, then I, N R # 0 since R< R' is integral. But
0 # acl,N R implies a e P, = Z(R), a contradiction.
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