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1. Introduction. When considering a conformal mapping of a
domain, say' B? of the z-plane, it is useful to introduce a metric
which is invariant with respect to conformal transformations. The
line element of this metric is given by

(1.1) dsi(z) = Ky(z, %)|dz*, B= B,

where Kjy(z, z) is the kernel function of B:. (In the case of [|2]| < 1]
the metric (1.1) is identical with the hyperbolic metric introduced by
Poincaré.) In addition to the invariant metric one can also introduce
scalar invariants, for instance,
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(Cy(?) is the curvature of the metric (1) at the point z.)

Using the kernel function Ky(z, %), 2=(2,,* - -, 2.), One can generalize
this approach to the theory of PCT’s (pseudoconformal transformations),
i.e., to the mappings of 2n dimensional domains by » analytic functions
of » complex variables (with a nonvanishing Jacobian). It is of interest
to obtain bounds for the invariant J,(z), see (3.1), depending on
quantities which are in a simple way connected with the domain, for
instance, the maximum and minimum (euclidean) distances between
the point z and the boundary of the domain.

In the present paper we shall determine such bounds in the case
of pseudoconformal mapping of the domain B = B* of the z,, z,-space
by pairs
(1.3) wy = [z, %) » k=1,2,
of analytic functions of two complex variables (with nonvanishing
Jacobian). The generalization of our procedure to the case of pseudo-
conformal mappings of domains B™ by » functions of » complex

variables, 3 £ n < oo, is immediate and will not be discussed in the
following.

2. The minima \;'(2). To obtain the desired bound we use
! The upper index at a set indicates its dimension.
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the minimum values A\;'(z) of the integral

2.1) Sm' fOPdw, &=, 8),

(dw = the volume element), under some additional conditions for f at
the point z = (z,, 2,).

As indicated in [1, pp. 183 and 198 ff.], many invariant quantities
arising in the theory of PCT’s can be expressed in terms of the minima
Ms'(2). For instance,

5 1 _ MN(2)

2.2) Ky(z, 7) YOk Jy(7) e

Here A3(z) is the minimum of (2.1) under the condition f(z) = Xy,
z € B, Ajo¥1ig the minimum under the condition f(z) = Xu, (0.1(z)/02,) =
X, and Ay*oo¥w¥ou(z) ig the minimum under the condition f(z) = X,
(0f(»)/0z) = X, (0f(2)/02,) = X,,. (K is a relative invariant, see (25),
p. 180, of [1].)

Using (23b), p. 179 of [1], one obtains the representations for
the A;'(2) in terms of the kernel function K = K, and their partial
derivatives K, = (0K/07,), Ko5 = (0K/[372,), Kyis = (0K/07,), Kyoii = 0K/0%,.
Obviously it holds

LEMMA 2.1. Suppose that z€BC S, then
2.3) Ao '(R) = A(2) .

Here it is assumed that the minima N\ (z) on both sides of (2.3)
are taken under the same conditions.

Choosing for & a domain for which the kernel function Ky is a
simple expression of the equation of its boundary (e.g., choosing for
® a sphere or certain Reinhardt circular domains, see [2, p. 21]), we
obtain the desired inequality.

Using the above method, we shall derive in the next section an
inequality for the invariant Ju(z).

3. Derivation of bounds for Jy(z). Let B be a connected domain
of the (four-dimensional) z,, z,-space, z, = z, + 1y, k = 1, 2. Let

K __ 0*log K

3. Z) = = — -, mn T
(3.1) J(2, Z) Jy TaTs — | Tal 02.,0%,

denote the invariant respect to PCT’s, see (37a), p. 183 of [1]. Here
with K is the kernel function of B and T, are the coefficients of
the line element
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(3.2) dst = VS Tozdz,dz,

m=1n=1

of the metric which is invariant with respect to PCT’s, see [1, p. 182 ff.].

THEOREM 1. Suppose that r is the maximum distance of the
point 2z, z € B, to the boundary 0B, and o is the corresponding minimum
distance. Then

(3-3) H(p, v) = Jo2) = H(r, 0) ,

_ _2r'[P)P — 0 — 27 — 2%
H(p, r) = W , P(0)= 0" — 27, — 2.7 .

Proof. By (97), p. 198 of [1],

5.4 () = MENEE)

¢4 @ = = ha@r

and in accordance with (2.3) for I B A the inequality
MNP (2) A (ZIA(R)

3.5 23300y \O) < JW(z) < Lallw \R)
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holds. If  is the maximum distance of the point z from the boundary
0B, and p is the minimum distance of z from 0%, then one can use
for 9 the hypersphere |z,]> + |2,]* < 7* and for J the hypersphere
|22 + |2, |* < p*. By (23b)%, p.179 of [1] and by (5a), p. 22 of [2] it
holds for the hypersphere |z, |* + |z, < 7%

oy — TP
(3.6) M) = UL
AN 1 _ [ P(r)]
(3.7) MO = o = g

Analogous formulas hold for A§'(z)Ay'(z) and Mj(2). Consequently (3.3)
holds.

4. An application of Theorem I. A domain which admits the
group

(4.1) z;: = zkei¢k N 0 é Py é r N k = 1, 2 5

2 In the last term of the expression for 1¥oo¥10%0i(¢) of (23b) are misprints, in the

. K Koo K Koo :
denominator Koo Koo should be replaced by | Ko le_ol. In the nominator of the

last term of (23b) the last term Kun in the third row should be replaced by Knw. In
the denominator the first term Koo of the third row should be replaced by Koi.
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of PCT’s onto itself (automorphisms) is called a Reinhardt circular
domain (see [3], pp. 33-34).
A domain, say R, bounded by the hypersurface

(4.2) 12,] = r(|2:]) ,

where ¥y, = r(x,) is a convex curve, is a Reinhardt circular domain.
Its kernel function is

(4.3) Ky(2, ) = By + By2.Z; + B2,2, + B2ziz: + B, 2,222, + -+,
(4.4) Biy= | |a"lafmdo
®

dw volume element (B,, are the inverse of moments of R), see [2],
p. 20 ff.

LEMMA. The kernel function K, and its derivatives at the center
0 of R equal

Km =K= Boo ’
(45) Kw@ = K, (0) =0, Kwﬂ') = aZIS = By, Kmo_o =0,
! 02,0%,
Kouﬁ = Dgyy **°
Therefore
" 3
@8 L0 = 5 I

K Kooﬁ) Kooﬁ Boo BjoBm
K1066 Kmﬁ) Kxoﬁ

Koﬂ) Kmﬁ Koni
(see [1], p. 183, (37a)).

THEOREM II. Let B = B(R) be a pseudoconformal image of a
Reinhardt circular domain R, and let r and o be the maximum and
mintmum distances from the boundary, respectively, of the image
2" = (20, 25) = B(0) of the center 0 of R in B. Then
(4.7) H(p, r) < -B%_ < H(r, p) .

BB,

104201

Here B, are the inverse moments (introduced in (4.4)) of R.

Proof. Since J, is invariant and B is a pseudoconformal image
of R
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(4.8) To(0) = Jy(") = B
' a(0) = Ja BBy

By Theorem I it follows that for Ju(z°) the inequality (4.7) holds.
Similar results as above can be obtained for other interior dis-
tinguished points, for instance, for critical points of Ju(z, Z).

REMARK. One obtains a generalization of Theorem I by assuming
that & and A are domains |z, '™ + |2,]* < 0* and |z, "™ + |z,]* < 73,
respectively. The kernel function for the above domains is given in
(5), p. 21, of [2].
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