Pacific Journal of Mathematics

ON BOUNDED SOLUTIONS OF A STRONGLY NONLINEAR ELLIPTIC EQUATION

NGUYÊN PHUONG CÁC

Vol. 57, No. 1 January 1975

ON BOUNDED SOLUTIONS OF A STRONGLY NONLINEAR ELLIPTIC EQUATION

NGUYEN PHUONG CÁC

I. Introduction. Consider the Dirichlet problem for a bounded domain $G \subset R^n(n \ge 2)$ having smooth boundary ∂G :

where $\mathscr M$ is a second order differential operator of Leray-Lions type mapping a real Sobolev space $W_0^{1,q}(G)(1 < q < \infty)$ into its dual; $f, f_i (i=1, \cdots, n)$ are given functions. We have used the notation D_i for the derivative in the distribution sense $\partial/\partial x_i$ and the convention that if an index is repeated then summation over that index from 1 to n is implied. We shall assume that the real function p(t) is continuous and satisfies the condition

$$(2) p(t)t \ge 0 \forall t \in R,$$

but otherwise (p)t is not subject to any growth condition. In this paper we discuss the existence of a solution of equation (1) in $W_0^{1,q}(G) \cap L^{\infty}(G)$.

Many papers appearing recently have studied equations and inequations involving strongly nonlinear elliptic operators of the type (1). For equations we mention among others [1], [2], [7]; in [1] and [2] the existence of a solution in $W_0^{m,q}(G)$ when the operator $\mathscr M$ has arbitrary order 2m is established under the additional hypothesis:

Given $\varepsilon>0$, there exists $K_{\varepsilon}>0$ such that

(3)
$$p(t)s \leq \varepsilon p(s)s + K_{\varepsilon}[1 + p(t)t] \quad \forall t, s \in R$$

[3], [9] among others deal with strongly nonlinear inequations in $W^{m,q}(G)$.

For an operator \mathcal{A} of second order, [4] proves the existence of a solution in $W_0^{1,q}(G)$ under the sole condition (2).

Finally let us mention that the existence of bounded solution of other strongly nonlinear equations and inequations has been discussed in [8]. However it seems to us that the technique of this paper is different from ours; it consists of multiplying the equation with a nonlinear expression of u; it also seems that our method when applied to some concrete cases yields different results in the sense that we only require the functions in the right hand side of (1) to be in $L^r(G)$ for some r > 1 and not in $L^{\infty}(G)$ as in [8].

II. Main result. The operator A is assumed to be of the form

$$\mathscr{A}_{u} = \frac{\partial}{\partial X_{i}} a_{i}(x, u, \nabla u) + a_{0}(x, u, \nabla u)$$

where $\nabla u = \text{grad } u$ and the functions a_i satisfy the following conditions:

(i) Each a_i $(i=0,1,\cdots,n)$ is a function defined on $G\times R\times R^n$ and of Caratheodory type: $a_i(x,\eta,\zeta)$ is measurable in x for fixed $\eta\in R,\,\zeta\in R^n$ and is continuous in $(\eta,\zeta)\in R\times R^n$ for almost all fixed $x\in G$. Moreover there exist a constant c, a number $q,1< q<\infty$, a function $k(x)\geq 0$ a.e. on $G,\,k(x)\in L^{q*}(G)(1/q+1/q^*=1)$, such that

$$|a_i(x, \eta, \zeta)| \leq c(k(x) + |\eta|^{q-1} + |\zeta|^{q-1})$$

for $i = 0, 1, \dots, n$; a.a. $x \in G$ and $\forall (\eta, \zeta) \in R \times R^n$.

(ii) For a.a. $x \in G$,

(6)
$$[a_i(x, \eta, \zeta) - a_i(x, \eta, \zeta')](\zeta - \zeta') > 0 \quad \text{if} \quad \zeta \neq \zeta'$$

(iii) For a.a. $x \in G$ and bounded η ,

(7)
$$a_i(x, \eta, \zeta)\zeta_i/(|\zeta| + |\zeta|^{q-1}) \longrightarrow \infty \text{ as } |\zeta| \longrightarrow \infty$$

Condition (5) implies that the semilinear form

$$\mathscr{A}(u, v) = \int_{\sigma} [a_i(x, u, \Delta u)D_i v + a_0(x, u, \nabla u)v]dx$$

is defined for all $u, v \in W_0^{1,q}(G)$ and there is $\mathcal{N}u \in W^{-1,q*}(G)$ such that $(\langle \cdot, \cdot \rangle)$ denotes the pairing between $W_0^{1,q}(G)$ and $W^{-1,q*}(G)$)

$$\mathscr{A}(u, v) = \langle \mathscr{A}u, v \rangle \quad \forall v \in W_0^{1,q}(G)$$
.

It is known that the mapping $\mathscr{N}: W_0^{1,q}(G) \to W^{-1,q^*}(G)$ is continuous and bounded ([6], Chapter 2, Section 2.6). Moreover, under the hypotheses (6) and (7), \mathscr{N} is pseudo-monotone and therefore it is of type (M): If $u_i \to u$ in $W_0^{1,q}(G)$, $\mathscr{N}u_i \to \chi$ in $W^{-1,q^*}(G)$ and limsup $\langle \mathscr{N}u_i, u_i - u \rangle \leq 0$ then $\mathscr{N}u = \chi$. (Here and in the sequel " \to " and " \to " denote weak and strong convergence respectively.) We prove

THEOREM. Suppose that the differential operator $\mathscr A$ of the form (4) satisfies conditions (5), (6), (7) and the coercivity condition:

There exists a constant $\nu > 0$ such that for all $v \in W_0^{1,q}(G)$

(8)
$$\mathscr{A}(v, v) \geq v ||v||_{W_0^{1,q}(G)}.$$

Suppose also that the continuous function p(.) satisfies the condition $p(t)t \ge 0$, $\forall t \in \mathbb{R}$. If $f_i \in L^s(G)$ with $s \ge q^*$, s > n/(q-1), $i = 1, \dots$,

n; and f(x) and the function k(x) in (5) both belong to $L^r(G)$ with $r \geq q^*$, r > n/q, then the Dirichlet problem (1) has a solution $u \in L^{\infty}(G) \cap W_0^{1,q}(G)$ in the sense that

$$\mathscr{A}(u, v) + \int_{G} p(u)v dx = \int_{G} (f_{i}D_{i}v + fv) dx \quad \forall v \in W_{0}^{1,q}(G).$$

Proof. We note that if q > n then by the Sobolev imbedding theorem, any function in $W_0^{1,q}(G)$ is continuous on G and hence bounded. Consequently, in this case it suffices to prove the existence of a solution in $W_0^{1,q}(G)$. This can be done by partially repeating and slightly modifying the proof given below for the case $q \le n$. We also note that if q > n then $q^* > n/(q-1)$ so that the theorem holds if $f_i, f, k(x) \in L^{q^*}(G)(i=1, \cdots, n)$.

So let us suppose that $q \leq n$. For each positive integer N we denote by $p_N(t)$ the function

$$egin{aligned} p_{\scriptscriptstyle N}(t) &= p(t) & ext{if} & |p(t)| \leq N \,, \ &= N & ext{if} & p(t) > N \,, \ &= -N & ext{if} & p(t) < -N \,. \end{aligned}$$

The mapping $T_N: u \to \mathcal{N}u + p_N(u)$ from $W_0^{1,q}(G)$ into $W^{-1,q^*}(G)$ is of type (M). In fact, consider a sequence $u_j \to u$ in $W_0^{1,q}(G)$ with $T_N u_j \to \chi$ in $W^{-1,q^*}(G)$ and $\limsup_j \langle T_N u_j, u_j - u \rangle \leq 0$. By the Sobolev imbedding theorem, we can assume without loss of generality that $u_j(x) \to u(x)$ for a.a. $x \in G$. Condition (2) on p(t) and Fatou's lemma then give

$$\lim_{j}\inf\int_{G}p_{N}(u_{j})u_{j}dx\geq\int_{G}p_{N}(u)udx$$
.

On the other hand, Lebesgue's dominated convergence theorem gives

$$\lim_{i} \int_{G} p_{N}(u_{i}) v dx = \int_{G} p_{N}(u) v dx \quad \forall v \in W_{0}^{1,q}(G) .$$

We then deduce that $p_N(u_j) \rightharpoonup p_N(u)$ in $W^{-1,q*}(G)$, hence $\mathcal{M}u_j \rightharpoonup \chi - p_N(u)$ as $j \to \infty$ and

$$\limsup_{i} \langle \mathscr{A} u_i, u_i - u \rangle \leq 0$$
.

Since \mathscr{A} has property (M), it follows that $\mathscr{A}u = \chi - p_N(u)$ i.e. $T_Nu = \chi$. It is clear that T_N is also bounded and hemicontinuous. The coercivity of \mathscr{A} implies that of T_N . Therefore (cf. e.g. [6], Remark 2.1, page 173) there exists $u_N \in W_0^{1,q}(G)$ such that for all $v \in W_0^{1,q}(G)$

$$\langle \mathscr{A}u_{\scriptscriptstyle N} + p_{\scriptscriptstyle N}(u_{\scriptscriptstyle N}), v \rangle = \langle -D_i f_i + f, v \rangle$$

We now find a bound for the L^{∞} -norm of u_N .

Taking $v = u_N$ in (9) and bearing in mind that $p_N(t)t \ge 0$, we obtain from the coercivity condition (8) that

$$||u_N||_{W_0^{1,q}(G)} < C$$

here and in the sequel C denotes various constants independent of N. Next we take in (9)

$$v(x) = \max \{u_{N}(x) - h, 0\}$$

where $h \ge 1$. If we denote by A_h the set $\{x \mid x \in G, u_N(x) > h\}$ then

(11)
$$\int_{A_h} [a_i(x, u_N, \nabla u_N) D_i u_N + a_0(x, u_N, \nabla u_N) (u_N - h)] dx$$

$$+ \int_{A_h} p_N(u_N) (u_N - h) dx$$

$$= \int_{A_h} [f_i D_i u_N + f \cdot (u_N - h)] dx .$$

On the set A_h , $u_N(x) > h \ge 1$, hence by condition (2), $p(u_N(x)) \ge 0$. Therefore, taking into account the coercivity condition (8) and condition (5), from (11) we obtain

(12)
$$\nu \int_{A_h} |\nabla u_N|^q dx \le C \int_{A_h} [f_i D_i u_N + f \cdot (u_N - h) + k(x)(u_N - h) + u_N^{q-1}(u_N - h) + (u_N - h) |\nabla u_N|^{q-1}] dx$$

We now make use of the well known inequalities

$$|u_N \cdot |_{\mathcal{L}} |u_N|^{q-1} \le (\nu/4) |\nabla u_N|^q + C u_N^q$$

 $|f_i \cdot D_i u_N| \le (\nu/4n) |\nabla u_N|^q + C |f_i|^{q*} (i = 1, \dots, n)$

We then deduce from (12) that

(13)
$$\int_{A_h} |\nabla u_N|^q dx \le C \int_{A_h} \left[1 + \sum_{i=1}^n |f_i|^{q*} + \{|f| + k(x)\} u_N + u_N^q \right] dx$$

By hypothesis q>1, f(x), $k(x)\in L^r(G)$ with r>n/q and $f_i\in L^s(G)$, hence $|f_i|^{q*}\in L^{s/q*}(G)$ with s/q*>n/q. Remembering that on A_h , $u_N(x)>h\geq 1$, we obtain from (13) that

(14)
$$\int_{A_h} |\nabla u_N|^q dx \le \int_{A_h} |u_N|^q \varphi(x) dx$$

where $\varphi(x) \ge 0$ a.e. on $G, \varphi(x) \in L^{\beta}(G)$ with $\beta > n/q$. From (14) Hölder's inequality gives

(15)
$$\int_{A_h} |\nabla u_N|^q dx \leq \left[\int_{A_h} |u_N|^\alpha dx \right]^{q/\alpha} \left[\int_{A_h} \varphi^\beta dx \right]^{1/\beta}$$

with $q/\alpha + 1/\beta = 1$. Therefore

$$(16) \int_{A_h} |\nabla u_N|^q dx \leq C ||\varphi||_{L^{\beta}(G)} \left[\left(\int_{A_h} (u_N - h)^{\alpha} dx \right)^{q/\alpha} + h^q \operatorname{meas}^{q/\alpha} A_h \right]$$

Since $\beta > n/q$, $\alpha < nq/(n-q)$ and we deduce from (16) and (10) by using Theorem 5.1, Chapter 2 of [5] that $\operatorname{ess}_{G} \max u_{N}(x) < C$. Similarly, by taking in (9)

$$v(x) = \max\{-u_N(x) - h, 0\}$$
,

we obtain a bound from below for $u_N(x)$. Thus

$$||u_N||_{L^{\infty}(G)} < C$$

We now pass to the limit as $N \to \infty$. Because of (10), (17) and the Sobolev imbedding theorem, we can extract a subsequence of positive integers, still denoted by $\{N\}$ for convenience, such that

$$u_N \longrightarrow u$$
 in $W_0^{1-q}(G)$, $u_N(x) \longrightarrow u(x)$ a.e. on G , u_N tends to u in the weak* topology of $L^{\infty}(G)$, $p_N(u_N)$ tends to $p(u)$ in the weak* topology of $L^{\infty}(G)$, $\mathscr{A}u_N \longrightarrow \chi$ in $W^{-1,q*}(G)$.

Then by the Lebesgue convergence theorem we have

$$\lim_{N}\int_{G}p_{N}(u_{N})(u_{N}-u)dx=0.$$

Therefore taking $v = u_N - u$ in equation (9) and letting $N \rightarrow \infty$ we obtain

$$\lim_{N} \langle \mathscr{A} u_{N}, u_{N} - u \rangle = 0.$$

Since \mathscr{A} is of type (M), it then follows that $\mathscr{A}u = \chi$ i.e. $\mathscr{A}u_N \to \mathscr{A}u$ in $W^{-1,q*}(G)$. From (9) we deduce

$$\langle \mathscr{A}u, v \rangle + \int_{G} p(u)v dx = \int_{G} (f_{i}D_{i}v + fv) dx \quad \forall v \in W^{1,q}_{0}(G)$$

with $u \in L^{\infty}(G) \cap W_0^{1,q}(G)$.

I wish to thank the referee for a number of helpful suggestions.

REFERENCES

1. F. E. Browder, Existence theory for boundary value problem for quasilinear elliptic systems with strongly nonlinear lower order terms, Proc. Sympos. Pure Math., 23 (1973), 269-286.

- 2. P. Hess, On linear mappings of monotone type with respect to two Banach spaces, J. Math. Pures et Appl., 52 (1973), 13-26.
- 3. ——, Variational inequalities for strongly nonlinear elliptic operators, J. Math. Pures et Appl., **52** (1973), 285-298.
- 4. ——, A strongly nonlinear elliptic boundary value problem, J. Math. Anal. and Appl., 43 (1973), 241-249.
- 5. O. A. Ladyzenskaya and N. N. Ural'tseva, Linear and quasi-linear elliptic equations, Translated from the Russian. Academic Press, New York 1968.
- 6. J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris 1969.
- 7. B. A. Tôn, Pseudo-monotone operators in Banach spaces and nonlinear elliptic equations, Math. Z., 121 (1971), 243-252.
- 8. ——, On strongly nonlinear elliptic variational inequalities, Pacific J. Math., **48** (1973), 279-291.
- 9. Nguyen P. Các, On strongly nonlinear variational inequalities J. Math. Pures et Appl.

Received October 15, 1974.

University of Iowa

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. Dugundji Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by Intarnational Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 57, No. 1

January, 1975

Keith Roy Allen, Dendritic compactification	1
Daniel D. Anderson, <i>The Krull intersection theorem</i>	11
George Phillip Barker and David Hilding Carlson, Cones of diagonally dominant	
matrices	15
David Wilmot Barnette, Generalized combinatorial cells and facet splitting	33
Stefan Bergman, Bounds for distortion in pseudoconformal mappings	47
Nguyên Phuong Các, On bounded solutions of a strongly nonlinear elliptic	
equation	53
Philip Throop Church and James Timourian, Maps with 0-dimensional critical	
set	59
G. Coquet and J. C. Dupin, Sur les convexes ubiquitaires	67
Kandiah Dayanithy, On perturbation of differential operators	85
Thomas P. Dence, A Lebesgue decomposition for vector valued additive set	
functions	91
John Riley Durbin, On locally compact wreath products	99
Allan L. Edelson, <i>The converse to a theorem of Conner and Floyd</i>	109
William Alan Feldman and James Franklin Porter, Compact convergence and the	
order bidual for $C(X)$	113
Ralph S. Freese, <i>Ideal lattices of lattices</i>	125
R. Gow, Groups whose irreducible character degrees are ordered by divisibility	135
David G. Green, The lattice of congruences on an inverse semigroup	141
John William Green, Completion and semicompletion of Moore spaces	153
David James Hallenbeck, Convex hulls and extreme points of families of starlike and	
close-to-convex mappings	167
Israel (Yitzchak) Nathan Herstein, On a theorem of Brauer-Cartan-Hua type	177
Virgil Dwight House, Jr., Countable products of generalized countably compact	
spaces	183
John Sollion Hsia, Spinor norms of local integral rotations. I	199
Hugo Junghenn, Almost periodic compactifications of transformation	
semigroups	207
Shin'ichi Kinoshita, On elementary ideals of projective planes in the 4-sphere and	215
oriented ⊕-curves in the 3-sphere	217
Ronald Fred Levy, Showering spaces	
Geoffrey Mason, Two theorems on groups of characteristic 2-type	233
Cyril Nasim, An inversion formula for Hankel transform	255
W. P. Novinger, Real parts of uniform algebras on the circle	259
T. Parthasarathy and T. E. S. Raghavan, <i>Equilibria of continuous two-person</i>	265
games	265
John Pfaltzgraff and Ted Joe Suffridge, Close-to-starlike holomorphic functions of	271
Several variables	271
Esther Portnoy, Developable surfaces in hyperbolic space	281
Maxwell Alexander Rosenlicht, Differential extension fields of exponential type	289
Keith William Schrader and James Lewis Thornburg, Sufficient conditions for the existence of convergent subsequences	301
Joseph M. Weinstein, Reconstructing colored graphs	
I 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	