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The concept of an infinite cyclic covering has been applied
to knot theory. In this paper that of a finite cyclic covering
is considered. This enable us to study such cases as pro-
jective planes in the 4-sphere and oriented f-curves in the
3-sphere. Some properties of elementary ideals of these
cases are examined. The technique of free differential cal-
culus is used, instead of that of coverings.

Let L be a polyhedron in an nm-sphere S* (» > 1) that does not
separate S, and let G, be the fundamental group of S* — L. We
use the additive group J, of integers modulo p as the coefficient group
for homology. Let ! be an (» — 2)-dimensional cycle on L. Let H,
be the multiplicative cyclic group of order p, generated by ¢. Then,
there is a homomorphism + of G, into H, such that for each gc G,

gq/p — tlink(g,l) s

where link (g, I) € J, is the linking number between g and ! in S".

Using Fox’s free differential calculus ([1], [2]), we associate to
a sequence of elementary ideals E,(G,, ¥) of the group G, evaluated
in the group ring JH, of H, over integers .J. This sequence of
elementary ideals depends only on G, and ++, and hence it depends
only on the position of [ on L in S”. We shall denote it by E,().
If I and I’ are homologous on L, then E,l) = E,l') for every d.

In this paper we apply these elementary ideals E,() to the study
of the position of L in S”. The following two cases of E () are
considered: (1) L is a projective plane in S* and » =2, and (2) L
is a f-curve in S® and p = 3.

1. Miscellanea. Let o(t) =1+ t+ -+ + t*teJH,.
THEOREM 1. If + is onto, then E(l)C (o@t)) in JH,.

Proof. It is proved in [2] that
E(H,, id) = (o(?)) ,
where ¢d is the identity isomorphism of H,. From the diagram
¢, m, -2 m,,
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where v is onto, and Theorem 1 in [4], it follows that E()C (o(t))
in JH,.

Now assume that + is onto, and let Ey(l) = o(t)E(l). Let w = e*il»
and let J[w] be the ring of all complex numbers of the form 3\7= a,w?,
where a,eJ (¢=0,1,---,p—1). A homomorphism * of H, into
Jlw] is defined by t* = w. We naturally extend * to a ring homomor-
phism of JH, onto J[w]. Though Ei()* = (0), sometimes E(I)* is a
nontrivial ideal in J[w].

A trivializer of a group G is a homomorphism of G onto the
trivial group that consists of only one element. Any trivializer will
be denoted by the same notation o in this paper. Further the group
ring JG° will be identified with J.

2. Projective planes in S'. Let P be a polyhedral projective
plane in S*. By the Alexander duality theorem, the abelianization
of the fundamental group G, of S* — P is a cyclic group of order 2.
We use J, as the coefficient group for homology. Let ! be a 2-cycle
on P.

E()° = (2) and
E()° = @), if d >0, in J.
Proof. This follows to Theorem 2 in [4].

A projective plane P has only two cycles. First let I, be the
trivial one.

THEOREM 2. {

E(l) = (2) and

THEOREM 3.
! {Ed(lo) =), if d >0, in JH,

Proof. The proof is similar to that of Theorem 3 in [4].

Now let [ be the nontrivial 2-cycle on P, i.e., the fundamental
cycle for J-orientation of P. Since the homomorphism + is onto in
this case, by Theorem 1 we have E,(l)C (1 + ¢) in JH,. Let E() =
1 + EQ).

THEOREM 4. E()° = (1) in J.

Proof. Since
(2) = E()° = (1 + t)°E(Q)° = (2)E(1)°

in J, we have E(l)° = (1) in J.
Further E(l)* cJ is also an invariant of P in S'.

THEOREM 5. The ideal E(l)* in J is generated by an odd integer.
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Proof. Let E(l) be generated by a, + bt (¢t =1, 2, ---, ») in JH,.
Assume on the contrary that E(l)* is not generated by an odd integer.
Then we have a, — b, = 0 mod. 2 for every 4. From this it follows
that a, + b, = 0 mod. 2 for every 7. Hence we have E()° # (1) in J
which contradicts Theorem 4.

ExamMpLE 1. Let f(¢) be an integral polynomial with f(1) = 1.
Then, for each f(¢) there is a polyhedral, locally flat projective plane
P; in S* where the odd natural number |f(—1)| is a topological
invariant of P, in S* (see [3]). In these example, it is easy to see
that for the nontrivial 2-cycle I on P, we have E(l) = (f(f)) in JH,,
where f(¢) is considered as an element of JH,. Further we have

ED* = (f(=1)) in J.

3. O-curves in S°. Let P and @ be two distinct points in S® and
let a,, a, and a; be three polygonal arcs from P to €, which are
mutually disjoint to each other except at P and Q. Then L =aqa,U
a, U a; is called a 6-curve in S°. Further, if each of these three arcs
is oriented from P to @, then L is called an oriented f-curve in S°.
From now on we use J; as the coefficient group for homology.

Let L be a f-curve in S®. Then the abelianization of the funda-
mental group of S® — L is a free abelian group of rank 2. Let! be
a l-cycle on L.

THEOREM 6 E(l)° = E)° = (0) and
. E, () =(Q), if d> 1, in J.

Proof. This follows to Theorem 9 in [4].
THEOREM 7. E\(l) = E() = (0) in JH..
Proof. This follows to corollary of Theorem 7 in [4].

Now let L be an oriented #-curve in S®. Then there is a non-
trivial 1-cycle ! on L such that the coefficient of ! for each oriented
l-simplex of L is 1leJ,. The l-cycle ! is called the fundamental
cycle for the J,-orientation of L. Then, E,() in JH, and E,({)* in
J[w], where w = ¢*#*, are topological invariants of the oriented f-curve
L in S°.

ExAMPLE 2. Let L be the example of an oriented #-curve in [4],
where the orientation of L is given as shown in the figure in [4].
Let I be the fundamental cycle for this J,-orientation of L. Then
we have
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E0) = E1) = (0),
EQ)=@+t+12 and
EQ)=@Q), if d>2,

in JH, and E()* = 2) in J]w].

THEOREM 8. Let f(t)eJH, with f(1)=1. Then there is an
oriented G-curve L in S* such that for the fundamental cycle | for
the Jy-orientation of L we have

EMH=E®0=(Q1),
El) = (f@®) and
EQ=@Q, i d>2, in JH,.

Proof. Let f(r)eJH with f(1) = 1, where H is an infinite cyclic
multiplicative group generated by z. Then there is an example of
a f-curve L, and a 1-cyele [, on L, such that

Eyl) = El(ll) = (1) ’
E() = (f(z)) and
E(l)=@Q), if d>2,

in JH (see [5]). The coefficients of I, on L, are distributed as shown
in Fig. 1. Note that ares in the outside of the cube shown by dotted
lines in the figure are possibly complicated. Now the sequence of
elementary ideals remains invariant, even if L, is “blown up” to a
cube with 2 handles. Then the l-cycle I, on L, as shown in Fig. 4
has the same sequence of elementary ideals to that of [, on L,.
Considering I, in the homology of integers modulo 3, we have an
example of a 1-cycle I on L as shown in Fig. 5. The 1-cycle [ is
the fundamental cycle of a J;-orientation of the #-curve L and for
each d we have E,(l) = E,1) in JH;, where’ is a ring homomorphism
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of JH onto JH, defined by ' = ¢. Now the theorem can be seen
easily.
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