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The object of the paper is to evaluate

Z::[b('r;- x) —y][ c('r;- x) —z:|

4 Z [c(s : Y) z][a(s ;r Y) _ w]

L F[aeLa) _x:“:b(t +2) _y] .

c c

where [u] is the greatest integer function,
b,e)=(,a)=1(a,b)=1.
and
0=2<1, 0sy<1, 0=2<1.

1. Introduction. Put

1 .
(1.1) (@) = i“’ — [2] - 5 (x # integer)
0 (x = integer) .

The Dedekind sum s(k, k) is defined by

o n= 3 ()

It is well known that s(k, k) satisfies the reciprocity relation [5]

~1i Lk, Lk
(1.3) s(h, k) + s(k, h) = + 12<k y h>

for (h, k) = 1.
Rademacher [5] has proved the three-term relation

(1.4) s(bc, a) + s(ca’, b) = s(al/, ¢) = —}_ + 1 <bc 2 b _|_ _?_) ,

12 ab
where
(1.5) b,¢c)=(,a)=(a, b =1
and

(1.6) ao’ = 1(mod be), bb' = 1(modca), cc’ =1 (modad).
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340 L. CARLITZ

Rademacher [4] has introduced the sum

(1.7) sth klo,y) = 3 ((h r Z v o, x>>((" 4}; y))

r (mod %)

and proved the reciprocity formula

s(h, k|, y) + sk, by, x)
8~ (@) + 2{E B + L Bw + k) + £ B}
where (k, k) = 1, z and y are not both integers and E(oc) = Byx — []),
where B,(x) = #* — x + 1/6, the Bernoulli polynomial of degree 2.

In order to get a three-term relation for the generalized sum
s(h, k| z, y), the writer [2] defined

1.9) s(a, b, e,y 2= > @(a ¢ ': 2 _ x)(b(y ~plE z> )

r(mod e) [
where

0@) = o — [4] -

and proved that

s(a, b, ¢; x, y, z) + s(b, ¢, a3 ¥, 2, x) + s(c, a, b; 2, , Y)

(1.10) =6 — 2 Bley — bz) — L Baz — ex) — - B(bx —
T ey — bz) %oa [az — cx) 5% (b — ay) ,

where (b, ¢) = (¢, @) =(a, b)) =1 and ¢ = 1 if integers 7, s, ¢ exist such
that

r+x=s+y=t+z

; 0f=r<a, 0Z5s<b, 0=5t<ec;
a b c

0 = 0 otherwise. For ¢ =12 =0, it is easily verified that (1.10)
reduces to (1.8).
The reciprocity Theorem (1.3) is equivalent to [5, p. 9]

(1.11) th[ ]+kz[ :l:ilé(h—l)(k—1)(8hk—-h—k—1),

where (h, k) = 1. It is shown in [1] that (1.4) implies
(1.12) A, ¢c;a) + Ale, a; b) + A(e, b;¢) =@ — D)(b— )(c—-1),
where (b, ¢) = (¢, @) = (a, b)) = 1 and

(1.13) A, cia) =3, [’”’][a] .

a
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It is not difficult to give a direct proof of (1.12) and indeed con-
siderably more. It is also proved in [1] that

Hihr + 2 ks + 2
oy [ o]
=(h—1D@h— 1)k — 12k — 1) +6[z]([z] +2hk —h -k + 1),

where (B, k) =1 and 0 <z < h + k.
Generalizing (1.13), we define

(1.15) A, e aly, 2 %) = az—‘,l l:b(r +2) _ y][_c_(_'r_g__j—x) - z:r .

r=0

In Theorem 2 below we evaluate
R=A(a, bjelx, y;2) + Ab, c;aly, z;2) + Ac,a; b2, 2 ),
where (b,¢) = (¢, a) =(a,b) =1 and
0=s<1, 0=sy<1l, 0=2<1.

It is however convenient to first consider the sum

(1.16) B@aamﬂmm=§@—ﬁ“;@lmJW+@}

=0 a

In Theorem 1 below we evaluate
S =B(a,b;c|z,y;2)+ B, c;aly, zx)+ Alc, a; b2, 2;9) ,

where the parameters satisfy the same conditions as above.
The results are particularly simple if no two of the fractions

T+x,s;y,ttz O<r<a0=<s<b0=<s<ec)
a

are equal. In this case we show that

(1.17) S=abc, R=@—-1D0 - -1+ 1.
Also, if x =y = 2, we have

(1.18) S=abc—1, R=(a—1)0b—1)(c—1).

The last form evidently includes (1.12).
It should be noted that (1.14) is not contained in the results of
the present paper.

2. Preliminaries.

LEMMA 1. For a =1,
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a—1 r
2.1 lax] = St o + ——] .
=0 a

LEemMMA 2. For x # integer,

(2.2) [—#] = —[2] — 1.
LEMMA 8. Put O(x) =z — [z} — 1/2. Then O(z + 1) = O(x) and

(2.3) Oaz) = 3 @(x%——i—).

r(mod a)
LEMMA 4. For a =1, (b, a) =1,

i[x + %] = [aa] + %(a, — DB -1).

r=0

Lemmas 1, 2, 3 are well-known. To prove Lemma 4, take

SlerG]=BlerT-0le+5) -3

1 1
= —ba—1)— @ —_——
ax—l—z (a ) (ax) 2a

1 1 1 1
= —ab— =g — = Bl
[ax] + =a a b+

= [ax] + —;—(a, -~ DB -1).

3. Three term relation for B(a, b; ¢ |z, y; z). We assume in the
remainder of the paper that

(3.1) (b, ¢)=(c,a)=(a,b) =1
and
3.2) 0=x<l, 0=y<1l, 02«1,

Also we write

-
o

a—1 b—1 ¢c—

-

.
7,8,% r=0 8=0 t=0

It is convenient to define

(3.3) B(a, b;clz, y;2) = § l:x — ﬂ(-t-ciz—q[y - {)_(t_:-_z_)] .

t=0

By Lemma 1, this gives
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(3.4) B(a,b;c]x,y,z)=Z[T+x—t+z]':s+y—t+z:|.

rost a c b c
Put
E=r+x’7]=s+y’gzt+z
a b ¢

Thus (3.4) becomes
(3.5) Bla, bic|w,4;9) = 3 [¢ - Olp — -
To begin with, we assume that no two of the fractions

(3.6) r4+ec s+y t+z2
’ b c

0=r<e0=s<bh0=t<c)

differ by an integer. It is easily seen that this is equivalent to
requiring that no two of the fractions are equal. We shall refer to
this as Case 1. Case 2 is that in which exactly two of the fractions
are equal, Case 3 that in which all three are equal. If a pair », s
exists such that

it is easily shown to be unique.
Thus in Case 1 we have, by Lemma 2,

(3.7 E-d=-[E-¢-1,
so that (8.5) becomes

Ba, bielz, viz) = — 21— Cle— & -2 n—¢.
Hence

(3.8) B(a,b;c|x, y;2)+ B, c;aly, 25 %) + Ble, a; bz, x; ¥)
= ”,%{[’7 — Q-8+ =€l -7+ [E—nlln—{]
+Ip—a+C—8+E—7

--s{n-a-g)E-a+3)
(-0 De-n+3)
+(e-n+ ) -a+3)h+ Sae.

Hence if we put
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(3.9) T=S{lr-d+E-a+E-7+3},
it is clear that
T2 -aeg) s E-asg)

(3.10) +<[5_77]+%>2I,+.2_abc—28;

where
3.11) S=B(a,b;c|z, y;2)+ B, c;aly, zz)+ Ble,a; b|z, x5 y) .
Since
-8+ —¢&+[—7=—1or —2 (Case 1 or 2),
it follows that

(3.12) T= %abc (Case 1 or 2).

Also since each of [ — ], [ — &, [6E— 7] =0 or —1, we get

,,%{([’7 —q+ %)2 + ([C — &+ —le-)z + ([5 — ]+ %)2} - %abc :

Thus (8.11) reduces to simply
(3.13) S = abe (Case 1) .
Turning next to Case 2, let 7, s, satisfy

§o=r0+x:so+y:7]o.
a b

For this pair we have
2 —&l=—[&—7]=0
rather than (3.7). Thus

B, cialy, z o) = — ([0~ £]IE ~ 7]

(3-14) -+ sic-al.

Since

Sk-al =512 )= el

we get, in place of (3.13),
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(3.15) S = abe + [z — ¢&)] (Case 2) .
For Case 3, let ry, s, t, satisfy & =7, = {, that is

T+ _S+Y _t+2
a b c

Equation (3.14) remains unchanged. Since

T = i—abc + 2 (Case 3),

we therefore get
(3.16) S=abe—1+ [z~ al] + [y — b&} + [# — en] (Case 3) .

Since

[x—al)] =[x —a&)] =[c— (r,+ 2)] = -7, ete.,

we may replace (3.16) by
(3.16) S=abe—1~1r,—8—t (Case 3) .

We may now state

THEOREM 1. Let (b, ¢) = (¢, @) = (a,d) =1 and

0=s2<1l, 0=sy<1l, 0=s2<1.

Then

S = B(a, b;¢| =, y; 2) + B(b, c; a |y, z; x) + Ble, a; b |z, x; y)
18 evaluated by (3.13), (3.15) and (3.186).

In particular, for ¢ = y = z, we have

COROLLARY 1.

"Z‘ll:x _b(r ;— a:):“:w _o(r + :x;)]

r=0 a

(3.17) * 2[“” - cﬁ—bﬂ)][“ - g&bw}

+§[x—a————~(t:x):l[x ——QQ—:—_—Q] =abec—1.

t=0

4. Three-term relations for A(a, b;c¢|=x, y; 2). We again first
consider Case 1. Thus in
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none of the quantities

a(t+z)_x bt + 2)
¢ ’ c

—Y 0=st<eo)

is an integer. It follows that

Aa, bic|x, y;2) = g{l + [x - M:}Hl + [y _ b+ z)]}

c
=o+gle 2] gy -]
+ B(ae, b;elx, y; 2) .
Thus by Lemma 4, we get
Afa, bs ez, ¥; 2)
@1) = [ex — az] + [ey — be] — Eac—_bc+%a+ Ly
+ B(a, bjclz, ¥; 2) .
Let
4.2) R=A(a,bjc|x y;2) + A, c;a |y, z;x) + Ale, a; b 2, ;) .
Then by (4.1) and (3.13) we get

= [ex — az] + [cy — bz] + [ay — b2] + [az — cx]
4.3) + [bz — cy] + [bx — ay] — (bec + ca + ab)
+@+b+e)+3+S.

Applying Lemma 2, this reduces to
(4.4) R=(@—-1b—-1)Cc—1)+1 (Casel).
As for Case 2, let 7, s, denote the exceptional pair, that is,

g, = roa—}—x: sob-{-y =7,.

4G, 60y, 25 5) = Z l:b(r + ) y][c_(?:i_@ _ z]

a a

=§{1+[y—l—’(i}—w—)]}{1+[z_(it’—@]}
_ 5[1+[z—c—(rif—x)—}}-

(4.5)
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Then, as above, it follows that

Ab,c;aly, z;0) = Bb, c;aly, 2 x) + [ay — bx] + [az — cx]

(4.6) 1 1 1 1
2bh+mc——agb— —ac — [z — .
+2 +2c 2ab 20,0 [z — c&]
Similarly
Afe, a;b |z, 25 y) = Ble, a; b | 2, %3 y) + [bx — ay] + [bz — cy]
(4.7 1 1 1

+—a+——c———ab——21—bc—[z—c770].

2 2 2

However (4.1) remains unchanged.
Thus

R=S—(bc+ca+ab)+(@a+bdb+e¢c)—1—2[z—cn).
Therefore, by (3.15), we have
4.8) R=(a—1)(b—1)(c—1)— [z —cnp] (Case 2).
Finally, for Case 3, let », s, f,, be the exceptional triple:

(4.9) Tt+T _S+Y _ btz @

a b ¢ =7 =0 -

We now have

A, c; aly, z; x) :ai‘i{l 4+ [y _Q(J'_(';_“?_):l}{l n [z _e(r+ x):l}

r=0 a

—1—[y—b&] — [z —b&] .
Thus in place of (4.6) we get

A(b, c;a |y, 2 x)
= B(b, ¢;a |y, 2 x) + [ay — bx] + [az — cx]
1 1

1 1
+ —2-b + —2—6 —2—ab _é.ac [y —b&] — [z — c&] .

(4.10)

347

There are similar formulas for A(c, a; b |2, x; y) and A(a, b; ¢ |z, ¥; 2).

Since

[cy — bz] + [bz — cx] = [az — cx] + [cx — az]
= [bx — ay] + [ay — ba] =0,

it follows that
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R=S+a+b+c—bc—ca—ab— [y—b&] — [z — c&]
— [z — o] — [& — an] — [x — al)] — [y — b))
=S+a+b+c—bc—ca— ab
— 2[x — a&] — 2[y — bn,) — 2[z — ()] .
Making use of (3.16) we get
4.11) R=(@—1)(b—1)(c—1)—[z—a&]—[y—bdn]—[z—cl] (Case 3)
or, if we prefer,
411y R=(a—-1)(b—1)c—1)+7r,+ s +t (Case 3).
This completes the proof of
THEOREM 2. Let (b,¢c) = (¢, a) =(a,d) =1 and
0=2<1, 0=sy<1l, 0=2<1.
Then
R =A(a,b;c|x y;2) + A, c;aly, z;2) + A(e, a; b | 2, ; )
is evaluated by (4.4), (4.8) and (4.11).

In particular, for x = y = 2z, we have

COROLLARY 2.

“z“f[:b(r +x) x:][c(r + ) x]

r=0 a a

+ Z[““ R L= R B RS VORI

1
t=1
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