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If m is a multiply perfect number (¢(m)=tm for some
integer t), we ask if there is a prime p with m = p°n,
(p*, n) =1, on) = p*, and o(p®) =tn. We prove that the only
multiply perfect numbers with this property are the even
perfect numbers and 672. Hence we settle a problem raised
by Suryanarayana who asked if odd perfect numbers neces-
sarily had such a prime factor. The methods of the proof
allow us also to say something about odd solutions to the
equation c(o(n)) = 2n.

1. Introduction. In this paper we answer a question on odd
perfect numbers posed by Suryanarayana [17]. It is known that
if m is an odd perfect number, then m = p°%k* where p is a prime,
p Yk, and p=a =1(mod4). Suryanarayana asked if it necessarily
followed that

(1) o) =p*, o(p®) =2k .

Here, o is the sum of the divisors function. We answer this question
in the negative by showing that no odd perfect number satisfies (1).
We actually consider a more general question. If m is multiply
perfeet (o(m) = tm for some integer t), we say m has property S if
there is a prime p with m = p°n, (p% n) = 1, and the equations

(2) on)y=p*, o) =tn

hold. Note that if %, p, a, t is a solution of (2) with p prime, then
1 = (p%, 6(p%) = (p°, n), so that o(p°n) = tp°n; that is p°n is multiply
perfect. Hence the multiply perfect numbers with property S are
in one-to-one correspondence with the solutions of (2). We shall
prove:

THEOREM 1. If p is a prime, n, a,t are positive integers, and
(2) holds, then either

(3) n=21, p=2, a=5, t=3
or
(4) n=2", p=2"*"-1, a=1, t=2.

COROLLARY. If m is a multiply perfect number with property
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S, then m = 672 or m is an even perfect number. In particular,
no odd perfect number has property S.

Write the odd perfect number m = p°k* as a product of primes
ppi ... p, (Note that Pomerance [12] and Robbins [14] have
shown that v =6.) Let N(m) be the number of subscripts ¢ for
which there is a subscript j such that (o(p¥ip¥d), p,p;) > 1. Then
0 =< N(m) £v. It is not difficult to see that Suryanarayana’s equa-
tions (1) are equivalent to the odd perfect m satisfying N(m) = 0.
Hence the above corollary implies N(m) > 0. We show however that
N(m) is not even close to 0, but more nearly v.

THOREM 2. If m is an odd perfect number, then
(5) v+ 1—[log+ 1)/log2] < Nm)=v.

Several authors (Kanold [8], Niederreiter [11], Suryanarayana
[16], [18]) have considered the equation

(6) a(o(n)) = 2n ,

calling the solutions n super perfect. The even super perfects have
been completely classified, but it is not known if any odd super
perfects exist. The methods we develop to consider (1), (2), and (5)
allow us also to get some results on odd solutions of (6). We shall

prove:

THEOREM 3. If n is an odd super perfect number, then neither
n nor a(n) is a prime power and either n or o(n) is divisible by at
least 3 distinct primes.

Note that Suryanarayana [18] has already shown that = is not
a prime power, but we give a new proof here for completeness.
We (the second and third authors) have actually been able to prove
much more than Theorem 3, but we do not give the details in this
paper. (We have proved that if # is an odd super perfect number,
then n > 7-10*, w(no(n)) = 5, and w(rn) + w(o(n)) = 7. Here w(n) is
the number of distinct prime factors of #.)

The main tool of this paper (Theorem A in §2) has the remarkable
distinction of having been proved independently nine times.

In the research for this paper, the first author worked separately
from the other authors.

2. Preliminaries. If z, ¥y are integers, we shall write z ||y if
x|y and (x, y/x) = 1. If p, q are distinct primes, we shall denote
by ord, (p) the exponent p belongs to modgq, that is, the smallest



SOME NEW RESULTS ON ODD PERFECT NUMBERS 361

natural number d for which p?=1 (mod q). We denote by a.(p) the
integer ¢ such that ¢°||p*—1, where d =ord, (p). Clearly ord, (»)|q¢—1
and a.(p) = 1.

From Theorems 94 and 95 in Nagell [10] and the fact that
o(p®’) = (p**' — 1)/(p — 1), we have:

LeEMMA 1. Suppose p,q are distinct primes with q + 2 and
b, ¢ are natural numbers. Then

(i) +f »p =1(mod q), then ¢’ | o(p°) if and only if ¢"|lc + 1,

(ii) +f » %= 1(mod q), then ¢|| o(®?) if and only if b= ap),
ord, (p) ¢ + 1, and ¢*%® || ¢ + 1.

LEMMA 2. Suppose p, q are distinct primes, , ¥, b, ¢ are natural
numbers, o(qg®) = p¥ and q°|| o(p°). Assume q # 2. Then

(i) 4f p =1 (modgq), then ¢*|lc + 1,

(ii) 4f » =1 (modq), then ord,(p)|c+ 1 and ¢**|/c + 1.

Proof. Now (i) follows from (i) of Lemma 1. Also (ii) will
follow from (ii) of Lemma 1 provided we show a.p) =1. Now
pP*=00@Q)=1+qg+ -+ +¢q% sothat p* —1 = q(mod g?). Then since
p % 1(mod q), we have q || (p* — 1)/(p — 1) = 0(p*™"). Lemma 1 now
implies a.(p) = 1.

There is a well-known result about expressions of the form
(a® — 1)/(a@ — 1) (see Bang [2], Zsigmondy [20], Sylvester [19], Birkhoff
and Vandiver [3], Dickson [4], Kanold [7], Artin [1], Leopoldt [9],
Richter [13]), which implies the following:

THEOREM A. If » is a prime, ¢ is a natural number, and
1 <d|x-+ 1, then there is a prime q| o(p®) with ord, (p) = d, unless

(i) p=2and d =6,

(ii) » is a Mersenne prime (that is, of the form 2% — 1) and
d = 2.

3. The main results. In this section we prove Theorems 1
and 2.

Proof of Theorem 1. We first consider the case p = 2. From
the equation o(n) = 2* and Theorem A, we see that % is a product
of distinct Mersenne primes (cf. Sierpinski [15]); say # = p.p, « -+ D,
where each p, =2% — 1 k, is prime and &k <k, < --- <k,. Then
a= k. Now itn =02 =2"% -1, Hence for 1 <7 =<s, we
have 2% — 1|2'*Z% — 1, go that k;| >, k,. Since the k; are distinct
primes, we have
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8

(7) k|l + 3k, .

Then s = 2. Now the expression [[ %k, —1— 3 k, increases separately
in each of the s “variables” k&, ks, -+, ke If s=2Fk =2k, =3,
we have 2.3|1 4+ 2+ 3. This gives the solution (3). If s =2 and
k. =5, then kk,—1—k —k,=22-5—1—-2—-5>0, so that (7)
fails. Alsoif s=3, [Tk, —1—>k>2"—1—25s>0, so again (7)
fails.

We now consider the case p > 2. Since o(n) = p* is odd, we
have n = 2*p}{* ... p¥*r where k=0, >0, and p, ---, p, distinct
odd primes. Suppose r =0, so that n =2*. Then d(n) = 2" —1=p°.
Suppose @ > 1. By Theorem A, there is a prime gq|o(p*™) with
ord, (p) = 2a. Then ¢ | (p* — 1)/(p* — 1) = »* + 1 = 2¥*', an impossi-
bility since ¢q is odd (cf. Gerono [6]). Hence ¢ =1 and we have
solution (4). Thus we may assume r = 1. Now for 1L =i =r, we
have o(pz"z) | p* and p#¢|o(p*). Lemma 2 then implies »,|a + 1, so
that p,p, -+ ».|a + 1. Theorem A implies there is a prime ¢| o(p®)
with ord, (p) = PyPy+++ P,. Then q+2 p, -+, »,, and since q|itn,
we have ¢ |f. Hence

PP P, <Qg=t= a(p°) = a(p*) . o(n)
n

»* "
_ p¢+1 — 1 2k+1 — 1 . pgaiﬂ — 1

p(p—1) 2 p¥i(p, — 1)
__._ « 2. ,
< -1 i1l p% 1
so that ’
2p 1 2p 2.3
1 < ¢ H é é < 1 ’
p—1 .—1)  (@—-1m -1  2-4

a contradiction.

Proof of Theorem 2. If 4 issuch that 1 <4 <y and (g(pip}*),
pp;) =1 for all j,1<j=<v, then p¥|o(p®) and o(pi*)|p*. Let 2
be the set of such subscripts 7, and let @ be the cardinality of 2.
Lemma 2 implies that J[o»:;|a + 1. Since also 2|a + 1, we have
at least 2¢** — 1 divisors d of @« +1 with d > 1. Since p is not a
Mersenne prime (we have p = 1 (mod 4)), Theorem A implies for each
such d, there is a prime r = r;| g(p®) with ord, (p) = d. Then each
r, is odd, and since m is perfect, we have r,€{p, 0,5, -+, ».}. Hence
29t — 1 <y, so that w < [log (v + 1)/log 2] — 1.
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4. Super perfect numbers.

LEMMA 3. Let n be an odd super perfect number. Then

(i) = is a square,

(ii) o(n) is odd,

(iii) the prime factorization of o(n) s pP°P¥L ... p¥* where
p=a=1(mod4) and v=0.

Proof. Kanold [8] proved (i) and (ii). Then m = ¢(n) is an odd
integer for which 2|/ o(m). Then such an odd integer must have
the prime factorization indicated in (iii) (cf. Euler [5]).

Proof of Theorem 3. Suppose o(n) is the prime power p°. Then
o(p®) = o(6(n)) = 2n, so that Theorem 1 implies p°n is even, contra-
dicting Lemma 3.

Suppose % is the prime power ¢°. Then, in the notation of
Lemma 3, we have just proved that v=1, so that for 1 <715y
we have p¥|o(q®) and o(p¥)|q’. Say r = max{p, p,, -+, »,}. Now
Lemma 2 implies either »2|b + 1 or r-ord,(q)| b+ 1 in which case
ord, (¢) > 1. In the first case b + 1 has the 2 divisors  and r* which
are multiples of ». In the second case, b + 1 has the 2 divisors r
and r-ord, (¢g) which are multiples of ». Since ¢ is odd, in either
case Theorem A implies there are 2 distinct primes dividing o(q%)
which are 1 (modr). This contradicts (iii) of Lemma 3 and the choice
of r.

Suppose both n and o(n) are divisible by precisely 2 distinet
primes. Now if (n, 6(n)) = 1, then no(n) is divisible by precisely 4
distinct primes and o(no(n)) = o(n)o(o(n)) = 2no(n). Then Lemma 3
implies no(n) is an odd perfect number. This contradicts the previ-
ously stated result ([12], [14]) that every odd perfect number is
divisible by at least 7 distinct primes. Hence (%, o(n)) > 1. Hence
from Lemma 3 we have the prime factorizations

n = qzb,ch
o(n) = ¢°s? .

Now o(g”) | s* and since n» | o(o(n)), we have ¢* | 6(s?). Then, as in
the above paragraph, there are at least 2 distinct primes dividing
o(s?) which are 1 (mod ¢). This contradicts o(s?) | 2n.
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