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V. K ANN AN AND T. THRIVIKRAMAN

This paper gives a lattice theoretic characterization of
(complete) lattices which are lattices of Hausdorff compactifica-
tions of locally compact spaces. This is accomplished via a
characterization of the lattices of closed equivalence relations
on Γi spaces.

NOTATIONS. L is a complete dually atomic lattice.
D is the set of all dual atoms of L.

l DEFINITION. Let peL. Then the set H(p) = {de D\d^ p)
is called the hull of p.

NOTE. H(l) = 0.

2, DEFINITION. Let EaD. The kernel of E denoted by Ker
E is defined as Adesd.

3. DEFINITION. Let peL. p is said to be a primary element
if whenever q and r are two elements in H(p) such that Card.
H(q A r) Φ 3 and s e D is such that Card. H(s A q) = 3 = Card.
H(s AT), it is true that s e H(p).

NOTE. Trivially, 1 as well as any dual atom is primary.

4* DEFINITION. A star of L is defined as a subset S of D
which is maximal with respect to the following property: d,d'eS=>
d A d' is a primary element and if (d, dr) and (dlf d2) are distinct pairs
of elements of S, then d A dΫ Φ dγ A d2.

5* DEFINITION. Let p, q be primary elements. Then a primary
rectangle is defined as H(p, q) = {(Slf S2) | Slf S2 are stars such that
S, Ω H{p) Φ 0 Φ S2 Π H(q)}.

6. DEFINITION. Let AaD. a(A) is defined as the set of all
unordered pairs (S, S') of stars such that S f) S' Γ\ A Φ 0.

7. THEOREM. A complete, dually atomic lattice L is isomorphic
to the lattice of closed equivalence relations of a Tι space X if and
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only if the following are true:
( ί ) Vtej Pi is a primary element for any collection {Pi\izJ}

of primary element in L.
(ii) (a) If deD, then d belongs to exactly two stars.
(b) Any two stars intersect in a singleton.
(iii) Ha D is a hull if and only if
(a) if dlf d2e H and if de D such that d ^ dt A d2, then de H.
(b) a(H) is an intersection of finite unions of primary rectangles.
(iv) a = Ker (H(a)) for every a e L.

Proof (Necessity). Easily checked, bearing in mind the discussion
in §1 of [3].

(Sufficiency). Let X be the set of all stars in L. From (ii) (a)
and (ii) (b), there exists a bisection Θ between the set D of all dual
atoms of L and the set of all unordered pairs of distinct stars.

From (i), and noticing that O G L is a primary element, it follows
that primary elements of L form a complete lattice P under the
same order. Now D is precisely the set of all dual atoms of P.
We can form the hull-kernel topology for D in the lattice. This
topology can then be translated to X as follows:

A set A c X is closed if and only if θ'^A x A) is a hull of a
member of P. We show now that this defines a ϊ\ topology on X.
Clearly θ~\ζd x 0 ) = 0 and Θ~\X x X) = D so that 0 and X are
closed. If SeX, then ^({S} x {S}) = 0 = H(l) so that every sin-
gleton is closed. If S Φ S', S, S' c X, θ~ι({S} x {Sr}) is a singleton.
So any two-element set is closed.

Now let A, B c X be closed, each containing at least two elements.
Then A U B is closed. For, let p and q be the primary elements
determined by A and B respectively. Then consider the primary
rectanglls H(p, p), H(q, q), H(p, q), H(q, p). Now if C = Θ'1((A\JB) x
(A U B)), then a(C) is the union of these primary rectangles. For, if
(S,S')ea(C), then there exists deC such that S 0 S'= {d}; now
θ(d) = (S, S') e ((A U B) x (A U 5)) so that S, S' e A (J £; it is easy to
check that if S, S' both belong to A (respectively B), then (S, S') e
H(p, p) (respectively H(q, q)). If S e A and S' e B, then (S, S') e H(p, q)
and if SeB and S'eA, then (S, S')eH(q, p). On the other hand,
that all these four primary rectangles are subsets of a(C) is easily
verified.

Hence by condition (iii), C is a hull set. Note that condition (iii)
(a) is satisfied here, by the maximality in the definition of stars.

Let K be the kernel of C. It can be seen that K is primary.
It follows that A U B is closed.

Let AidX be closed for every ieJ and let A = Π At Then



LATTICES OF HAUSDORFF COMPACTIFICATIONS 443

Θ~\A x A) is the intersection Π θ~1(Ai x At) and so is a hull set.
For, by condition (iii), intersection of hull sets is again a hull set.
Let r be its kernel. Then by using condition (iv), it can be proved
that r — VPi where pt is the primary element corresponding to At.
50 it follows from condition (i) that r is primary. So A is closed.
Thus X is a 2\ space.

Next we show that L is isomorphic to L{X), the lattice of closed
equivalence relations for this space X. Let us define a map η: L —>
L(X) as follows: If xeL, Ύ](X) is the relation defined on X as below:
S1rj{x)S2 if and only if either S, = S2 or S1 Π S2 n #(#) =s* 0 . This is
an equivalence relation. For, let Sιη(x)S2 and S2rj(x)S3; also let
51 Π S2 = {d3}, S2Π S3 = {dj, and S3 Π Si = {d2}; then by the maximality
in the definition of stars, it can be proved that d2^ dι Λ dz and so
by (iii) (a), d2eH(x) since H(x) is a hull set. So S{η(x)S3. Thus
transitivity is proved. Reflexivity and symmetry of η(x) are trivial.

Now we show that ΎJ(X) e L(X). That is, 7){x) is a closed equivalence
relation on X. The relation η(x) viewed as a subset of X x X is
precisely #(#(#)). So by (iii)(b), it is an intersection of finite union
of primary rectangles. Each primary rectangle is a closed subset
of X x X since H(p, q) = A x B where A and 5 are the closed subsets
of X determined by p and q respectively. So η(x) is a closed subset
of X x X.

Thus )?:Z/-+L(X) is well defined.
Now η is injective. For, let x Φ y. Then by condition (iv) we

get that H{x) Φ H{y). Let d e H(x) - H(y) (say). Let S, S' be the
two stars containing d. Then (S, S') e a{H{x)) but g α(iϊ(2/)). So
η(x) φ η(y). Futher η is surjective. For, let R be a closed equivalence
relation on X. Then i2 is an intersection of finite unions of closed
rectangles, whereas each closed rectangle is a primary rectangle.
Let H— {deD \ the pair (Su S2) of stars containing d belongs to R}.
Then H satisfies conditions (iii) (a) and (iii) (b) and hence by (iii), H
is a hull set. If x is its kernel, it follows that η{x) — R.

Ύ] preserves arbitrary unions. For, let x = \/axa. Now Π H(xa)
is a hull set by (iii). It ought to contain H(x). Let y be its kernel.
Then y ^ xa for each a. So y ^ x. Therefore, H(y)czH(x). So
Viy) — 7]^)- B u t V(v) = V«V(χ*) s i n c e it c a n be easily seen that
S, Vη(xa)S2 if and only if S, Π S2 Π (Π fl(««)) ̂  0 , while n H(xa) = H(y).

Ύ] preserves intersections. This can be seen as in the case of
unions, by considering the union of the hulls.

Thus Ύ] is an isomorphism.
Thus sufficiency is proved.

8* THEOREM. Let L be a complete, dually atomic lattice. Then
L is the lattice of T2 compactifications of a locally compact space if
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and only if it satisfies conditions (i) through (iv) above and also:
(v) Given any two primary elements pu p2€L, there exist pri-

mary elements ql9 q2eL such that pλ V ?i = p2 V q2 = 1 and gx Λ q2 = 0.
(vi) Given any collection of primary elements {pa}aej such that

A<χeκPa is a primary element for any finite subset K of J, then
ΛaejPa is also a primary element.

Proof. Notice that (v) is equivalent to saying that the space X
uniquely specified by L, is normal.

Also (vi) is equivalent to compactness.
It can be proved that the lattice of all closed equivalence relations

of βX — X is isomorphic to the lattice of all Hausdorffi compactifica-
tions of X, when X is locally compact and Hausdorff.

Thus the theorem.

9* REMARK. When X is not locally compact, the upper semi-
lattice K(X) of all Hausdorff compactifications of X is not necessarily
a lattice (cf. [5]). Now the problem arises whether the semilattice
K{X) determines the space βX — X. When X is locally compact,
the answer is in the affirmative (cf. [1]). A method to construct the
space βX — X from K(X) is given in [2]. But when x is not locally
compact, K{X) does not determine βX — X (cf. [2]). A study in
this direction forms a part of [4].
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