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The norm decreasing homomorphisms φ of Lλ(F) into
M(G) for locally compact groups F and G have been charac-
terized by F. P. Greenleaf using an integral representation.
In this note the authors improve and unify some of the results
and proofs of structure theorems in the previous literature.
Necessary and sufficient conditions that φ have a canonical
factorization of a general type are expressed in terms of the
extensibility of a ^-associated character on a ^-related closed
normal subgroup. In particular, an explicit factorization of
ψ can be obtained when either F or G is Abelian. Also
investigated is the structure of norm decreasing homomor-
phisms ψ with range in

With F and G denoting (throughout this note) locally compact
Hausdorff groups, the norm decreasing homomorphisms of the group
algebra Lι(F) into the measure algebra M(G) have been characterized
by Glicksberg [2] and Cohen [1] for Abelian groups and in the
general setting by Greenleaf [3]. The characterization obtained for
nonAbelian groups is less tractable than that obtained in the Abelian
case. (Compare Theorem 2.1 of [2] with Theorem 4.2.2 of [3].) In
this note the authors give necessary and sufficient conditions for a
nonzero norm decreasing homomorphism φ\ L\F) —* M(G) to have
certain factorizations analogous to those obtained by Glicksberg [2,
Theorems 2.1, 2.9] and Greenleaf [3, Theorem 5.1.5]. Furthermore,
those φ with range in L\G) are investigated, and simpler proofs of
Greenleaf's characterization of the epimorphisms and monomorphisms
between ZZ-group algebras (cf., [3, Theorem 5.2.1, Cor. 5.1.6], [4,
Theorem 2.1]) are provided.

In the interest of brevity we adopt the notations and definitions
of [3]. In addition, if X and Y are locally compact Hausdorff
spaces and Θ\X —>Y is continuous, then #*: M(X) —> M{Y) denotes
the canonical norm decreasing linear map defined by {θ*{μ), f) —
(μ,f°θ> for a l l / i n C0(Y), or equivalents, by θ*{μ){B) = μ{θ-\B))
for all Borel subsets, B, of Y; if Θ\F—>G is a continuous homo-
morphism then θ* is also multiplicative. If K is a compact sub-
group or closed normal subgroup of G, then mGfκ denotes the positive
left invariant measure on G/K so that mG, mκ, and mG]κ are
canonically related [6, Chaps. 3, 8], Lι(GjK) denotes the usual
Lebesgue space with respect to mGjκ. If K is compact, then
TΓJ: M(G/K) —> M(G) is the norm decreasing linear map defined by
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<πκ(μ)9 f) = <μf (πκ)*(f)> for all / in 3Γ(G), the space of continuous,
C-valued, compactly supported, functions on G, where under the

identification L\G) c M(G), (πκ)*f{gK) = \ f(gk)dmκ(k) for g e G.

Let G denote the group of continuous homomorphisms of G into the
circle group S1. If a is in G, then Aa denotes the isometric auto-
morphism of M(G) defined by (Aa(μ), /> = {aμ, /> = (μ, af) for all
/ in Co(G).

Let φ: (M(F), (so)) —• (M(G), (σ)) denote the unique norm de-
creasing extension of φ; let Ho = U {support<p(δβ): xe F), a subgroup
of G; then φ(δe) = £>m̂  where if is a compact subgroup of G normal
in Ho and p is in K[3, §4.2]. Let ζ:F-*H0/K be the mapping
defined by ζ(x) = πκ (supp φ(βx)). The continuity properties of $5
show that ζ is an epimorphism of F onto J3"0/^ and is continuous
as a map of F into G/iΓ. According to [3, Lemma 5.1.2] there is
a unique topology τ on HQ making H = (JH"0, *") into a locally compact
group, K a compact subgroup of H, the monomorphic inclusion
j:H—+G continuous, and the algebraic epimorphism ζ a continuous
open epimorphism Θ:F-+H/K. (Algebraically, ζ and θ are the same
map, but their topological properties differ.) Finally, recall ([3,
§4.2]) that φ(δz) = Xx,gδg*pmκ, where πκ(g) = ζ(x) for # in Ho and

LEMMA 1. Let Fφ = {x e F: φ(δx) = Xxρmκ for some | λβ | = 1},
and let Ύφ: Fφ —• S1 be defined by Ύφ(x) = λβ. Γ/ιe^ F^ is α closed
normal subgroup with Ker ζ = Fφ and 7φ is in Fφ.

Proof. xeFφ iff φ(δx) = Xje*ρmκ — Xx>β€*pmκ iff λα = λXϊ# and
ζ(α?) = ττ̂ (β) = β/ϋΓ. Thus, Fφ — Ker ζ and, therefore, it is a closed
normal subgroup. As ψ is a homomorphism and is ((so), (σ))-
continuous on norm bounded sets, it is easy to see that Ύφ is in Fφ.

We now state the main results reserving their proofs till later.

THEOREM 1. ( i ) Ύφ has an extension to a character Ύ in F iff
φ = j\Aβπ%;θ*Ar where K is a compact normal subgroup of a locally
compact group H, θ: F—+H/K is a continuous open epimorphism,
j:H~->G is a continuous monomorphism, and ΎeF, βeίl.

(ii) p has an extension to a character a in G iff φ = AjCgζ*Ar

where K is a compact subgroup normal in a subgroup HQ of G,
ζ: F—>H0/Kcz GjK is a continuous epimorphism, and ΎeF, aeG.

THEOREM 2. Let H and G be locally compact groups, let KczH
and JczG be compact subgroups, let L be a subgroup of G with J
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normal in L, let ψ: H—>L/JaG/J be a continuous epimorphism
with the relative topology on L/J, and let β e H with Ker β z) Ker ψ.
Then the following are equivalent:

( i ) L is an open/closed subgroup of G and ψ is an open map;
(ii)
(iii)
(iv) ψ~ι satisfies property iVioe, i.e., the ψ-inverse image of an

mGij-locally null set in GJJ is mH-loeally null in H; and,
(v) if H and G are Abelian, then the dual homomorphism

ψ: (G/J)A —* H is a proper map, i.e., the ψ-inverse image of a com-
pact subset is compact.

COROLLARY 1. ( i ) 7 9 = l iff φ = j *
(ϋ) φ(δe)^O iffφ = π*ζ*Ar.
(iii) φ is order preserving iffφ = π£ζ*.
(iv) (φ(f), ct) Φ 0 for some f in Lι(F) and some a in G iff

Ψ = Aaπtζ*Ar.

Proof, (i), (ii) and (iii) are all obvious from Theorem 1. If
(<p(f), a) Φ 0 for some / and a, then the map/—>{φ(f)y a) is a
nonzero multiplicative linear functional on L\F) and hence ([5,
(23.7)]) there is a 7 in F such that (φ(f), a) = </, 7> for all / in
L\F). Let / ^ 0 be in L\F) and 11 jTIU = l Then (A^φA^if),!} -
{φAr\f)>, ά) = (yf, 7> = \\f\\, = 1. As || A?φA?(f)\\x S 1, it must
be that A?φAj\f) ^ 0 and hence A^φAy1 is order preserving. Thus
φ = AjCκζ*Ar. Conversely, if φ = Aaπ\ζ%Ay, then for all g ^ 0 in
L\F) and with / = yg, we have (φ(f), α> = <τrjζ*(flr), 1> and this is
clearly nonzero for some ^ ^ 0.

COROLLARY 2. ( i ) // ί7 is Abelian, then every nonzero
φ: L\F) —> ikί(G) is of the form φ = i ^ π Jtf*^.

(ii) If G is Abelian, then every nonzero φ: U(F) —+ M{G) is of
the form φ = Aaπ%ζ*Ar.

Proof. This follows immediately from Theorem 1 since it is
well known that characters on closed subgroups of Abelian groups
extend to the whole group.

COROLLARY 3. ( i ) φ = j*Aβπ*κθ*Ar maps U{F) into Lι{G) iff
j(H) is open/closed in G and j : H-+G is an open map.

(ii) φ = Aaπ%ζ*Ar maps L\F) into Lϊ{G) iff Ho is an open/closed
subgroup of G and ζ: F—*G/K is an open mapping.

Proof. To prove (i), note that as θ*Ar(U(F)) = L\H/K), we
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have 3*Aβπl(L\HIK)) c L\G) if φ(L\F)) c U{G) and so Theorem 2
applies with ψ = j , L — Ho, and J = (e); the converse of (i) is well
known. If φ = AαπJζ*Ar maps U{F) into I/(G), then πJζ
L\G). Since ( π ^ o π j is the identity map, we have Z
(πκ)4L\G)) c Ll{GjK). Now, Theorem 2 applies with H = F, J = K,
L = Ho, and ψ = ζ; again, the converse of (ii) is well known.

An immediate corollary to Corollary 3 (i) is

COROLLARY 4 (Greenleaf [4, Theorem 2.1]). φ is a monomorphism
of U{F) into &{G) iffφ = j*Aβπ*κθ* where θ: F ~ H/K and j is a
topological isomorphism of H onto an open/closed subgroup of G.

COROLLARY 5 (Greenleaf [3, Theorem 5.2.1]). φ is anepimorphism
of L\F) onto Lι(G) iff φ ~ ΛTFoAr where FQ is a closed normal
subgroup of F, TFo = (πF().\Lτ{F)9 7 e F , and Λ: L\F/F0) = L\G) is
an isometric isomorphism.

Proof. If φ is an epimorphism, then (φ(f), 1> Φ 0 for some /
in U{F) and s o φ = πJζ*Ar by Corollary 1 (iv). By Corollary 3 (ii),
ζ is an open map and Ho is an open/closed subgroup of G. Since
elements in π%(Lι(G/K)) are constant on the cosets of K in G and
<p is an epimorphism, we must have K = {e} and φ = ζ*Ar. Since
ζ maps onto the open/closed subgroup Ho, it follows immediately
from the definition of ζ* that ζ*(L\F)) is supported on Ho in G.
However, ζ*(L1(F)) = ζ*(Ar(L1(F))) = φ(L1(F)) = L1(G) and hence H0=G
and ζ:F—+G is a continuous open epimorphism. Let ζ = XoπFQ

where Fo = Ker ζ and λ: FjFQ ~ G. Then φ = ζ^A, = λ*ΪV0Ar where

The next corollary is an interesting parallel of Corollary 1.2
and Theorem 2.3 of [4].

COROLLARY 6. ( i ) (Greenleaf) L\F) has a nonzero norm de-
creasing homomorphic image in M(G) iff FJF0 = H/K where Fo is
closed normal subgroup of F, K is a compact normal subgroup of
a locally compact group H, and H is continuously isomorphic to a
(not necessarily closed) subgroup of G.

(ii) L\F) has a nonzero norm decreasing homomorphic image
in Z/((7) of either of the types described in Theorem 1 iff F/Fo =
H/K where FQ is a closed normal subgroup of F and K is a com-
pact normal subgroup of a locally compact group H which is
topologically isomorphic to an open/closed subgroup of G.

Proof. Part (i) is immediate from the construction of H — (Ho, τ)
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and Θ:F->H/K. Part (ii) follows from Corollary 3.
It is clear that if φ = Ajc%ζ*Aτ9 then φ = j*Aβπ%θ*Ar where

β—aoj9 and so j\AβπlΘ*Ar is the more general factorization of
the two types. There naturally arises the question of existence of
a φ not of this general form. In light of Theorem 1 and its corollaries,
an example has been difficult to find and has eluded the authors.
The supporting evidence is favorable in view of the well known
fact that in general characters on closed subgroups need not extend
to the whole group.

Proof of Theorem 1. Part (i). If φ has the indicated factori-
zation, then φ = j*Aβπ%θ*Aγ and

where πκ(g) = θ(x) for x in F and g in H. It follows that i =
(β ° 3~ι)^ύ{κ) is the unit of Γ = φ({δx: xe F}), and φ(δx) = \xi for
I λ, I = 1 iff φ{δx) = Ύ(x)ί. Thus, Ύ(x) = Ύφ(x) on Fφ. Conversely,
suppose Ύφ has an extension to a character 7 in F. Let ψ = ^A;:1,
a norm decreasing homomorphism of L^JP) into M(G) with -f = φAγ1.
Since ^(δβ) = Ί\x)φ{δx) for all a? in F, we have that U {supp ψ (δx):
xe F} = Ho, ψ(δe) = φ(δe) = pmκ = i, and φ and ^ determine the same
ζ: F^Ho/Kc: G/K and 0: F-+H/K. Furthermore, if ψ(δx) = λi for
some I λ I = 1, then Ύ(x)Xί = Ύ(x)ψ(δx) = φ(δx). Therefore, a?€ JP9 and
7ψ(x) = 7(a;)λ. Since 79 is the restriction of 7 to Fφf λ = 1. Thus,
ir({δx: x € F}) Π S'i = {i} and by Theorem 5.1.5 of [3], ψ = uApz*κθ^
therefore, 9 = α/rAr = j*Aβπχθ*Ar.

Part (ii). If p has an extension to a character cc in G, consider
ψ = Aά1^, a norm decreasing homomorphism of L^JP) into M(G)
with ^ = A~ιφ. Since α extends ô we have for each x in F, ϊr{δx) =
Azι(^x,gδg*pmκ) = (Xz,g0L{g))δg*mκ. Thus, φ and ^ determine the
same compact K, subgroup Ho in (?, and maps ζ and θ. Let %,, =

Ktg&(9) s o t i i a t Ψ(δ*) = Vχ,gδg*mκ where ^(flr) = ζ(a?). Since δg*mκ

does not depend on the representative # in the coset gK, Ύ(x) — ηx>g

is a well defined function on F to S1. It follows easily from the
continuity properties of ψ that 7 e F; moreover, 7 extends 7ψ. Now,
the map 7r|ζ*Ar agrees with ^ on {λ^: xe F, \ λ | = 1} = S^F. As
τrJζ*Ar and ^ are ((so), (σ))-continuous on norm bounded sets and as
co [S 1^: (so)] is the unit ball in M(F) ([3, Lemma 1.1.3]), we have
7r£ζ*Ar = ψ and φ = Aaπ%ζ*Ar. The converse of (ii) is easily seen
from the relation Aaπ%ζ*Ar(δe) = Aa(mκ) — (a\κ)mκ.

Proof of Theorem 2. As the adjoint map of the homomorphism
ψ* is ψ:(Gfjy -+ίϊ when H and G are Abelian, the equivalence of
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(ii) and (v) is due to P. Cohen [1, Theorem 1]. As it is well known
that (i) implies (ii), and clearly (ii) implies (iii), it is necessary only
to prove (iii) implies (iv) and (iv) implies (i).

Assume (iii). We first show ψ*π*κ{Lι{H/K)) c L\G/J). Let / be
in j?Γ(H/K), and let C = ^ ( s u p p / ) , a compact subset of H. Let
β~ denote the bounded Borel function on G/J defined by β~ = 0
outside of ψ(C) and β~(x) = β(y) for x e ψ{G) and ψ(y) = x, yeH.
Since Ker ψ c Ker β, β^ is well defined on the compact subset ψ(C)
and it is continuous on ψ(C). Let Aβ~: UiG/J) —> L\G/J) denote the
bounded linear map of pointwise multiplication by /$Γ. Now, since
0~ o ψ = β on C, 7ΓJ(/) = / o πκ is supported on C, and ψ*Aβπκ(f) e
U{G/J), we have (Aβ~ψ*Aβπ*κ{f),g} = <πϊ(f),/3(β~oγ)(goψ)) = (π*(f),
gof) = O*πl(/), g) for all g in C0(G/J). Therefore, Aβ^ψ*Aβπ*(f) =
Ψ*πκ(f) and it is in Lι{G/J). Since / in SΓ(H/K) is arbitrary and

•ψvr£ is continuous, we have that ^*τrj maps U(HIK) into Lι{GjJ).
To prove (iv), first consider any Borel ra^-null set J? in G/J,

and let C be any compact subset of H with C K = C. Now, as
lc = πKχ^o), as ^*πj(χ^(c;)) is in L^G/J), and as 5 is a null set,
we have mff(Cn Ψ-\B)) = χ^m^-^JS)) = t*π£06^>)(£) = 0. Thus,
C Π ψ~\B) is an mjy-null set. Since every compact subset of H is
contained in a compact set C where C-K = C, it follows that ψ'^B)
is m^-locally null and hence ψ~\M) is mH-locally null for any mG!J-
null set M in G/J. Finally, let N be any m^/j-locally null set in
G/J and let C be any compact subset of H. Since CίΊ f~ι{f(C) f]N) =
Cίlψ 'W), and since ψ(C)Γ\Nis m^-null, we have that Cn^ί-iV)
is mH-null. Thus, ψ"\N) is mH-locally null and (iv) holds.

Assume (iv). As every locally compact group is the union of
(j-compact open subgroups, it suffices (in order to prove (i)) to show
ψ(S) is open in G/J and φ\8 is an open map for any σ-compact open
subgroup S in H. A theorem of Pontryagin (cf., [5, (5.29)]) shows
that any continuous epimorphism between σ-compact locally compact
groups is an open map. Therefore, it suffices to show ψ(S) is open
in G/J and hence a (σ-compact) locally compact group with the
relative topology. It is clear that ψ(S) is at least σ-compact and
therefore measurable. Since the restriction of the Haar measure
mH to the open subgroup S is the Haar measure on S, it is clear
that {f \s)'1 satisfies property iVl0c. Thus ψ(S) is not m^-locally
null. Let Ls = π^iψiS)), an ^-subgroup of G. By [6, § 3.9, p. 66
and §2.2, p. 165] Ls is m^-locally null iff ψ(S) is m^-locally null.
Therefore Ls is not m^-locally null and thereby contains a Borel
subset A of positive finite measure. Then AA~\ a subset of Ls, is
a neighborhood of the identity of G [5, (20.17)], and so Ls and
πj(Ls) = Ψ(S) are open in G and G/J, respectively. The proof is
complete.
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