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Let R be a commutative ring and R the structure sheaf
over the prime spectrum of R.

THEOREM: Suppose R has only finitely many minimal
primes. Then R is a projective ^-Module if and only if R
is a finite direct product of local rings.

Let R be a nonzero commutative ring with identity, and let
x = Spec (i?), the prime spectrum of R endowed with the Zariski
topology. Let R be the structure sheaf of R on X. We shall use
the terminology and notation of [5] in describing the category of
Λ-Modules, Mod(.β).

There is a functor T: mod (R) -> Mod (R) given T(M) = M and
T(f) — f, where M is the β-Module associated to M, and / is defined
at each stalk of M to be the localization of /. The functor T is
full, faithful and exact; moreover T preserves direct sums [5, Corol-
laire 1.1.3.8 and 1.1.3.9.]. In addition, T determines an equivalence
between mod(-B) and the category of quasi-coherent Λ-Modules. In
§ 1, we shall show that if R is a generator, then Mod (R) is equiva-
lent to mod (R). In § 2 necessary and sufficient conditions are given
for R to be a projective β-Module.

The author wishes to thank J. J. Rotman and the Referee for
their suggestions regarding the preparation of this paper.

1* The equivalence of Mod (R) and mod (R). C. J. Mulvey
[8] has given a necessary and sufficient condition for R to be a
generator in Mod (R). For the case of the affine scheme (X—
Spec(iϋ), R), we can state Mulvey's condition as follows:

PROPOSITION 1.1 (Mulvey, [8]). A necessary and sufficient con-
dition that R be a generator in Mod (R) is that the stalks of R may
be generated by global sections of R of arbitrarily small support.
If this condition holds, then X = Spec (R) is necessarily a regular
topological space.

THEOREM 1.2. The following are equivalent:
( i ) T: mod (iϋ) —• Mod (R) is an equivalence of categories^ i.e.,

every R-Module is quasi-coherent;
(ii) R is a generator for the category Mod(β);
(iii) X = Spec (R) is T,;
(ivi) R/N(R) is von Neumann regular, where N(R) is the nil-
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radical of R. If R is a flabby (flasque) R-Module, then the equivalent
conditions (i)-(iv) are satisfied.

Proof, (i) implies (ii). Since R is a generator of mod(i2), this
implication is clear.

(ii) implies (i). Since R is a generator, it is immediate that every
jβ-Module is of the form M.

(ii) implies (iii). Because R is a generator, by Proposition 1.1,
X — Spec (R) is a regular topological space. But X is always Γo, so
it is also 2\.

(iii) implies (iv). This is well-known and appears as a exercise
in [2, page 143].

(iv) implies (ii). Since R/N(R) is von Neumann regular and X =
Spec (R) is homeomorphic to Spec (R/N(R)), X has a basis of closed
and open sets. We shall use the criterion of Proposition 1.1 to show
R is a generator. Let x e X, and let U be an open set in X with
xe U. Let V be an open and closed (basic) set such that xe F g U.
Define sections 8± e R( V) and s0 e R(X — V) by sx{z) = 1, e RPz for all
ze V, and so(z) = 0ze RPz for all zeX — V. Since V partitions X,
we can collate st and s0 to obtain a global section s oί R with s(2) = 12

if z € F and s(z) = 0z if zί V. Clearly s generates Rx, and the sup-
port of s is 7 £ U. Therefore, by the Proposition, R is a generator.

For the last statement, suppose R is flabby and se R. Then the
restriction map R(X) —> R(D(s)) is onto, and hence the localization
map R—+R8 is onto. Now D(s) w Spec (J?β), and because R-+Rs is
onto, Spec(jRs) is a homeomorphic to a closed set of X. Hence the
usual basis is both open and closed; therefore points in X are closed
and X is 2\.

R. Wiegand has shown, using different techniques, that a reduced
prescheme (X, &) is regular (i.e., X can be covered by open sets Ui
such that (Ui9 & \ £7*) is the affine scheme of a von Nuemann regular
ring) if and only if every ΐ?-Module is quasi-coherent [9].

The Theorem provides examples of rings for which there are
projectives in Mod (i2).

COROLLARY 1.3. Suppose R/N(R) is von Neumann regular where
N(R) is the nilradical of R. The R-Module F is protective if and
only if F(X) is a protective R-module. In particular, P is a pro-
tective R-module if and only if P is a protective R-Module.

2. Protective quasi-coherent jβ-Modules* Suppose R is a pro-
jective Λ-Module. If P is a protective ϋJ-module, then there is an
i?-module Q such that P 0 Q = Σ ^ ; hence P 0 Q = Σ ^ since T
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preserves direct sums. Therefore, P is a projective ^-Module. Thus,
to discover when projective iϋ-module yield projective B-Modules, it
is enough to determine when R is projective.

PROPOSITION 2.1. If R is a local (not necessarily Noetherian)
ring, then R is a projective R-Module.

Proof. Since Hom^ (R, F) is naturally isomorphic to F(X) for
every β-Module F, we need only show the global section functor is
exact. Let px be the unique maximal ideal of R. For any β-Module
F, Fx = lim F{ U) where the direct limit is taken over all open sets
contaiinng x. Because X = Spec (R) is the only open set containing
xf Fx — F(X). Now, the formation of stalks is exact, so Hom^ (R, )
is exact, i.e., R is projective.

R. Bkouche [1] introduced the notion of soft rings.

DEFINITION. The ring R is soft (mou) if Max (R), the maximal
spectrum of R, is Hausdorff and J(R) = 0, where J(R) is the Jacobson
radical of R.

For our purposes, we need a notion a bit more general.

DEFINITION. The ring R is quasi-soft if for every cceMax(2t!),
the localization map ax\R—+RVχ is onto.

Every local ring is quasi-soft, but not necessarily soft. Every
von Neumann regular ring is quasi-soft. The relation between soft
and quasi-soft rings is given by the following.

PROPOSITION 2.2. // R is quasi-soft, then R/J(R) is soft, where
J(R) is the Jacobson radical of R. Every soft ring is quasi-soft.

Proof. If R is quasi-soft, then Max (R) is regular as can be
seen by imitating the proof for soft rings [1, Proposition 1.6.1 and
1.6.2]. But Max (R) is always TΊ; hence Max (R) is Hausdorff. Since
Max (R) ~ Max (R/J(R)) and J(R/J(R)) = 0, R/J(R) is soft.

Now suppose R is soft, ίceMax(iϊ), and let ax:R~>RPχ be the
localization map. Because J(R) = 0 and Max (R) is Hausdorff,
VM(keτ (α.)) = {x}, where VM{I) = Max (R) n V(I) for an ideal I of
R. Therefore, J?/ker (ax) is a local ring with maximal ideal px, and
so every element outside px is invertible. By the universal mapping
property of localization, iϊ/ker (ax) s RPJ hence R is quasi-soft.
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Quasi-softness is the condition we must investigate to find neces-
sary conditions for R to be a protective -R-Module in view of the
following result.

PROPOSITION 2.3. If R is a projective R-Module, then R is
quasi-soft.

Proof. Let x e Max (R) and set A = {x}. Then A S X is closed,
and we have the exact sequence

0 > RX_A > R -?-+ RA > 0

of β-Modules [4, Theoreme 2.9.3.]. Since R is projective, Hom^ (R, )
is exact, and hence Hom^ (R, R) ̂  Hom^ (R, RA) is onto. Now
Hom^ (R, R) = R and Hom^ (JB, RA) ~ RPχ, and it is routine to check
that a* may be identified with the localization map ax\ R—+ RPχ

(i.e., the obvious diagram commutes). Therefore R is quasi-soft.

We can now state and prove the

MAIN THEOREM. Suppose R has only finitely many minimal
primes. Then R is a projective R-Module if and only if R is
finite direct product of local rings.

Proof. Since R has only finitely many minimal primes, R is the
finite direct product of connected rings, say R = R1 x R2 x x Rn

each having only finitely many minimal primes. If R is a projective
5-Module, Rt is a projective ^-module for each ί. By Proposition
2.3 Ri is quasi-soft. Hence Max (RJ is finite, since each prime ideal
of a quasi-soft, ring is contained in a unique maximal ideal [1,
Proposition 1.6.1]. Also, since Rt is quasi-soft, Max(i?ί) is the con-
tinuous image of Spec(i2έ) [1, Proposition 1.6.2], (See also [3]).
Thus, Max(ϋJi) is finite and discrete, but also connected being the
continuous image of Spec (Rt). Therefore Max (jβ,) consists of a single
point, and hence U* is local.

Conversely, if R = Rx x x Rn where each R€ is local, then
Ri is a projective RrModule by Proposition 2.1. Hence, R is a
projective jB-Module.

The Main Theorem resolves the problem of determining the pro-
jectivity of R for rings with only finitely many minimal primes; in
particular, for Noetherian rings and integral domains.

Let R be a discrete valuation domain. In this case; X— Spec(i2) =
{(0), p), where p is the unique maximal ideal of R. Since R is local,



PROJECΊΊVE QUASI-COHERENT SHEAVES OF MODULES 461

R is a protective ^-Module. Since U = {(0)} is smallest open set con-
taining (0), Rv is also a protective 5-Module. Thus, there are
examples of protective ^-Modules which are not quasi-coherent.
Furthermore, since R@ Rπ is a generator for Mod (R) [6, Proposi-
tion 3.1.1], in this case Mod(R) has a small protective generator.
Hence Mod(-B) is equivalent to a category of modules [7, Theorem
4.1, page 104], but the functor T is not the equivalence since X =
Spec(-K) is not T,.
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