Pacific Journal of Mathematics

REARRANGING FOURIER TRANSFORMS ON GROUPS

CHUNG LIN

Vol. 57, No. 2 February 1975

REARRANGING FOURIER TRANSFORMS ON GROUPS

CHUNG LIN

Let G denote an infinite locally compact abelian group and X its character group. Let θ be a suitable Haar measure on X, and $1 . For a <math>\theta$ -measurable function ϕ on X, we define $\theta_{\phi}(t) = (\{\chi \in X : |\phi(\chi)| > t\})$ and $\phi^*(x) = \inf\{t > 0 : \theta_{\phi}(t) \le x\}$ for x > 0. ϕ^* is called the nonincreasing rearrangement of ϕ . Note that even though ϕ is defined on X, the domain of ϕ^* is $(0, \infty)$. A nonnegative function g defined on $(0, \infty)$ is called admissible if g is nonincreasing and $\lim_{x \to \infty} g(x) = 0$. Theorems:

- 1. Let G be nondiscrete with a compact open subgroup and g admissible. Then $g|_N = \hat{f}^*|_N$, where N is the set of positive integers, for some $f \in L^p(G)$ if $\sum_{k=1}^{\infty} g(k)^p k^{p-2} < \infty$.
- 2. Let G be nondiscrete with no compact open subgroup and g admissible. Then $g=\hat{f}^*m$ a.e. for some $f\in L^p(G)$ if $\int_0^\infty g(x)^p x^{p-2} dx < \infty$.
- 3. Let G be an infinite discrete abelian group which contains $Z, Z(r^{\circ})$ or $Z(r)^{\aleph_0}$ as a subgroup, g admissible. Then $g|_{(0,1)} = \hat{f}^*|_{(0,1)} m$ a.e. for some $f \in L^p(G)$ if $\int_0^1 g(x)^p x^{p-2} dx < \infty$.

Hardy and Littlewood [1], [2] characterized functions on Z such that every rearrangement is the Fourier transform of a function in $L^p(T)$, 2 . They also characterized functions on <math>Z such that some rearrangement is the Fourier transform of afunction in $L^p(T)$, 1 . Hewitt and Ross [4] generalized these results to arbitrary compact infinite abelian groups. We are interested in the case of LCA (locally compact abelian) groups. Here are our results.

THEOREM 1. Let G be nondiscrete with a compact open subgroup,

and g an admissible function. Then $g|_N = \hat{f}^*|_N$ for some $f \in L^p(G)$ if and only if $\sum_{k=1}^{\infty} g(k)^p k^{p-2} < \infty$. Moreover, there exists a constant A_p that depends on p only such that

$$\left(\sum_{k=1}^{\infty}g(k)^{p}k^{p-2}\right)^{1/p} \leq A_{p}||f||_{p}$$

for evrey such f.

THEOREM 2. Let G be a nondiscrete LCA group with no compact open subgroup and g an admissible function. Then $g = \hat{f}^*$ for some $f \in L^p(G)$ if and only if $\int_0^\infty g(x)^p x^{p-2} dx < \infty$. Moreover, there exists A_p that depends only on p such that

$$\left(\int_{0}^{\infty}g(x)^{p}x^{p-2}dx\right)^{1/p} \leq A_{p} ||f||_{p}$$

for every such f.

THEOREM 3. Let G be an infinite discrete abelian group containing Z, $Z(r^{\infty})$ or $Z(r)^{\aleph_0}$ as a subgroup and g an admissible function. Then $g|_{(0,1)}=\hat{f}^*|_{(0,1)}$ for some $f\in L^p(G)$ if and only if $\int_0^1 g(x)^p x^{p-2} dx < \infty$. Moreover there exists A_p that depends only p such that

$$\left(\int_{0}^{1} g(x)^{p} x^{p-2} dx\right)^{1/p} \leq A_{p} ||f||_{p}$$

for every such f.

Theorems 1 and 2 give us a complete solution for all nondiscrete LCA groups. Theorem 3 holds for "almost all" discrete abelian groups, but I am not able to settle the case where G contains $\prod_{n=1}^{+\infty} Z(r_n)$ as a subgroup, with $r_n \to \infty$.

The forward implications " \Rightarrow " of all three theorems and the existence of the constants A_p are due to Hunt [5]; see Stein and Weiss [6], Chapter V, Corollary 3.16.

II. A few lemmas.

LEMMA 1. Let G be a LCA group and H an open subgroup of G. Let $H^{\perp} = \{\chi \in X : \chi = 1 \text{ on } H\}$. Then for each $f_0 \in L^p(H)$, there exists $f \in L^p(G)$ such that $\hat{f}^* = \hat{f}_0^*m$ a.e. (where we use suitable Haar measures on X and X/H^{\perp} for the definitions of \hat{f}^* and \hat{f}_0^*).

Proof. Let $f_0 \in L^p(H)$ and define $f(x) = f_0(x)$ if $x \in H$ and f(x) = 0 otherwise. Since H is open, f is still λ -measurable in G

and $f \in L^p(G)$. Choose Haar measure λ_H on H to be the restriction of λ to H. Choose θ_{H^\perp} to be the normalized Haar measure on H^\perp , and θ_X to be an arbitrary Haar measure on X. Then a Haar measure θ_1 on X/H^\perp exists so that Weil's theorem applies [3; Vol. II, 28.54]. \hat{f} is clearly constant on each coset of H^\perp . That is, $\hat{f}(\chi) = \hat{f}_0(\chi H^\perp)$ for all $\chi \in X$. A calculation, using Weil's theorem shows that $\hat{f}^* = \hat{f}_0^* m$ a.e.

For the rest of this paper, we let g be a fixed admissible function on $(0, \infty)$, $1 and <math>\int_0^\infty g(x)^p x^{p-2} dx$ is finite.

LEMMA 2. (i) $\int_{0}^{1} g(ct)dm(t) < \infty \underset{\pi/x}{for \ all \ c > 0}.$ (ii) $0 \le \int_{0}^{\infty} g(ct) \sin xt \ dm(t) \le \int_{0}^{\pi/x} g(ct) \sin xt \ dm(t) < \infty \quad for \quad all \ x > 0, \ c > 0.$

Proof. (i) Since

$$\begin{split} \int_{0}^{1} & g(ct)^{p} dm(t) \leq \int_{0}^{1} & g(ct)^{p} t^{p-2} dm(t) \leq \int_{0}^{\infty} g(ct)^{p} t^{p-2} dm(t) \\ & = \frac{1}{c^{p-1}} \int_{0}^{\infty} & g(t)^{p} t^{p-2} dm(t) < \infty \end{split},$$

we see that $\int_0^1 g(ct)^p dm(t)$ is finite and hence $\int_0^1 g(ct) dm(t)$ is finite. (ii) For $k = 1, 2, \dots$, let

$$u_k = (-1)^{k+1} \int_{(k-1)\pi/x}^{k\pi/x} g(ct) \sin xt \, dm(t)$$

It is clear that $\nu_1 \ge \nu_2 \ge \nu_3 \ge \cdots \ge 0$ and $\nu_k \to 0$.

It follows that

$$\int_{0}^{\infty} g(ct) \sin xt \, dt \, = \sum_{k=1}^{\infty} (-1)^{k+1} \nu_{k}$$

and hence

$$0 \leqq \int_0^\infty g(ct) \sin xt \, dt \leqq
u_1 = \int_0^{\pi/x} g(ct) \sin xt \, dm(t) < \infty$$
.

This completes the proof of Lemma 2.

Define $G_c(x) = \int_0^{|x|} g(ct) dm(t)$ for $x \in R$. This is well-defined because $\int_0^1 g(ct) dm(t) < \infty$ by (i) of Lemma 2 and g is bounded in between 1 and |x|.

LEMMA 3. (i) $G_c(x) = o(x^{1/p})$ as $x \to 0$ and as $x \to \infty$.

(ii)
$$\int_0^\infty G_c(x)^p x^{-2} dm(x) < \infty \ ext{for all } c>0.$$

Proof. See [7], Vol. I, Ch. I, §9.16.

LEMMA 4. There exists $f \in L^p(R)$ such that $\hat{f}^* = gm$ a.e.

Proof. Define, for $x \in R$

$$\varphi(x) = \int_0^\infty g(2t) \sin xt \ dm(t) .$$

Then, by part (ii) of Lemma 2 $0 \le \varphi(x) \le G_2(\pi/x)$, for x > 0, because $0 \le \varphi(x) \le \int_0^{\pi/x} g(2t) \sin xt \ dm(t) \le \int_0^{\pi/x} g(2t) \ dm(t) = G_2(\pi/x)$. Since G_2 is an even function, we have that $|\varphi(x)| \le G_2(\pi/x)$ for all $x \in R \setminus \{0\}$. Part (ii) of Lemma 3 says that $G_2(\pi/x) \in L^p(R)$. If follows then that $\varphi \in L^p(R)$. Define, for $n \in N$,

$$\varphi_n(x) = \int_0^n g(2t) \sin xt \, dm(t) \quad (x \in R) .$$

Let x > 0. For each n, choose $m \in N$ such that $|2m\pi/x - n| \le \pi/x$. Then

$$egin{aligned} |arphi_n(x)| & \leq \int_0^{2m\pi/x} g(2t) \sin xt \ dm(t) + \left| \int_{2m\pi/x}^n g(2t) \sin xt \ dm(t)
ight| \\ & \leq \int_0^\infty g(2t) \sin xt \ dm(t) + \left| g\left(\frac{2(2m-1)\pi}{x} \right) \right| \frac{2m\pi}{x} - n \right| \\ & \leq \mathcal{P}(x) + \left| g\left(\frac{2\pi}{x} \right) \frac{\pi}{x} \leq \mathcal{P}(x) + \int_0^{\pi/x} g(2t) dm(t) \\ & = \mathcal{P}(x) + G_2\left(\frac{\pi}{x} \right). \end{aligned}$$

This shows that $|\varphi_n(x)| \leq |\varphi(x)| + |G_2(\pi/x)|$ for all $x \in R\setminus\{0\}$. Since $\varphi_n(x) \to \varphi(x)$ pointwise and $\varphi(x)$, $G_2(\pi/x) \in L^p(R)$, we must have $||\varphi_n - \varphi||_p \to 0$ be the dominated convergence theorem. So we can obtain φ by approximating φ_n . Let us compute φ_n :

$$\begin{split} 2i\varphi_n(x) &= 2i\!\!\int_0^n\!\!g(2t)\sin xt\,dm(t) = \!\!\int_0^n\!\!g(2t)(e^{-ixt}-e^{ixt})dm(t) \\ &= \!\!\int_R\!\!g(-2t)I_{[-n,0]}(t)e^{-ixt}dm(t) \\ &- \!\!\int_R\!\!g(2t)I_{[0,n]}(t)e^{-ixt}dm(t) \;. \end{split}$$

Recall that the Haar measure m on R is chosen so that the inversion theorem holds. We know that $g(2t)I_{[0,n]}(t)$ and $g(-2t)I_{[-n,0]}(t) \in$

 $L^{1}(R)$ and $\varphi_{n} \in L^{p}(R)$. Hence, by [3; Vol. II, 31.44 (b)], we have

$$2iarphi(x) = egin{cases} -g(2x) & ext{if} & x \geqq 0 \ & m ext{ a.e.} \ g(-2x) & ext{if} & x < 0 \end{cases}$$

Now define $f = 2i\varphi$ so that $|\hat{f}(x)| = g(|2x|)$ m a.e. It is then easy to check that $\hat{f}^* = gm$ a.e., which is what we needed to prove.

LEMMA 5. For each $n \in N$, there exists $f \in L^p(\mathbb{R}^n)$ such that $\hat{f}^* = gm$ a.e.

Proof. By Lemma 4, we may assume that n > 1. Define, for $k \in N$,

$$egin{aligned} arphi(x) &= \int_0^\infty g(2^n t) \sin xt \ dm(t) \ &arphi_k(x) &= \int_0^k g(2^n t) \sin xt \ dm(t) \ &f(x_1, \, \cdots, \, x_n) &= 2^n i arphi(x_i) rac{\sin x_2}{x_2} rac{\sin x_n}{x_n} \ &f_k(x_1, \, \cdots, \, x_n) &= 2^n i arphi_k(x_1) rac{\sin x_2}{x_2} rac{\sin x_n}{x_n} \end{aligned}$$

Let $m_n = m \times m \times \cdots \times m$ on R^n , $x = (x_1, \dots, x_n)$. Then

$$\varphi(x), \varphi_k(x), \frac{\sin x}{x} \in L^p(R)$$
.

Therefore

$$egin{aligned} &\int_{\mathbb{R}^n} |f_k - f|^p dm_n \ &= 2^{n^p} \! \int_{\mathbb{R}^n} \! \left| arphi_k(x_1) - arphi(x_1)
ight|^p \! \left| rac{\sin x_2}{x_2}
ight|^p \cdots \left| rac{\sin x_n}{x_n}
ight|^p dm_n \ &= 2^{n^p} \! \int_{\mathbb{R}} \! \left| arphi_k - arphi
ight|^p dm \left(\int_{\mathbb{R}} \! \left| rac{\sin x}{x}
ight|^p dm
ight)^{n-1}. \end{aligned}$$

As in the proof of Lemma 4, we have $||\varphi_k - \varphi||_p \to 0$, and so $||f_k - f||_p \to 0$ in $L^p(\mathbb{R}^n)$. Straight forward calculations show that

$$\hat{f}_k(x_1,\, \cdots,\, x_n) = egin{cases} g(-2^nx_1) & ext{ if } -k \leq x_1 < 0 ext{ and } x_j \in [-1,\, 1] \ & ext{for } 2 \leq j \leq n \ -g(2^nx_1) & ext{if } 0 \leq x_1 \leq k ext{ and } x_j \in [-1,\, 1] \ & ext{for } 2 \leq j \leq n \ & ext{otherwise} \end{cases}$$

 m_n a.e. and hence

468

$$\widehat{f}(x_1, \dots, x_n) = egin{cases} g(-2^n x_1) & ext{if} & x_1 < 0, \, |x_j| \leq 1, \, 2 \leq j \leq n \ -g(2^n x_1) & ext{if} & x_1 > 0, \, |x_j| \leq 1, \, 2 \leq j \leq n \ 0 & ext{otherwise} \end{cases}$$

 m_n a.e. It follows that

$$m_n\{x \in \mathbb{R}^n: |\widehat{f}(x)| > t\} = 2^n m\{x_1 > 0: g(2^n x_1) > t\}$$
.

This in turn shows that for x > 0

$$\hat{f}^*(x) = \inf\{t > 0: 2^n m\{x_1 > 0: g(2^n x_1) > t\} \le x\} = g(x)$$

m a.e., which completes the proof of Lemma 5.

III. Proof for the nondiscrete case. Let G be an infinite LCA group. To prove Theorem 1 and Theorem 2, Lemma 1 and the structure theorem [3, Vol. I, 24.30] shows that we may assume $G = K \times R^n$, where K is a compact abelian group.

Proof of Theorem 1. In this n=0, so that G=K. Then there exists $f_0 \in L^p(K)$, by [4], such that $\hat{f}_0^*|_{N} = g|_{N}$.

Proof of Theorem 2. In this case n>0. By Lemma 5, there exists $f_0 \in L^p(\mathbb{R}^n)$ such that $\widehat{f}_0^* = gm$ a.e. Define $f(x,y) = f_0(y)$ for $x \in K$ and $y \in \mathbb{R}^n$. Let $m_n = m \times \cdots \times m$ be the Haar measure on \mathbb{R}^n , λ_K be the normalized Haar measure on K and $\lambda_{K \times \mathbb{R}^n}$ the Haar measure on $K \times \mathbb{R}^n$ so that Weil's theorem holds. It follows that f is in $L^p(K \times \mathbb{R}^n)$ and $||f||_p = ||f_0||_p$. Moreover, for $\chi_1 \in \widehat{K}$, $\chi_2 \in \mathbb{R}^n$, we have

$$f(\chi_1\chi_2) = \begin{cases} f_0(\chi_2) & \text{if } \chi_1 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Choose $\theta_{\hat{K}\times R}n$, $\theta_{\hat{K}}$ and θ_{R^n} the Haar measures on $\hat{K}\times R^n$, \hat{K} and R^n respectively, so that Planchevel's theorem holds. Then Weil's theorem holds for these measures by [3, 31.46(c)]. Clearly $\theta_{\hat{K}}$ is the discrete measure on \hat{K} . Then for t>0

$$\begin{split} (\theta_{\hat{K}\times R^n})_{\hat{f}}(t) &= \int_{\hat{K}\times R^n} I_{\{\chi:|\hat{f}(\chi)|>t\}} d\theta_{\hat{K}\times R^n} \\ &= \int_{R^n} \int_{\hat{K}} I_{\{\chi:|\hat{f}(\chi)|>t\}} d\theta_{\hat{K}} d\theta_{R^n} \\ &= \int_{R^n} I_{\{x:|\hat{f}_0(x)|>t\}} d\theta_{R^n} = (\theta_{R^n})_{\hat{f}_0}(t) \ , \end{split}$$

and it follows that for x > 0,

$$\begin{aligned} \widehat{f}^*(x) &= \inf \left\{ t > 0 \colon (\theta_{\hat{K} \times \mathbb{R}^n})_{\hat{f}}(t) \le x \right\} = \inf \left\{ t > 0 \colon (\theta_{\mathbb{R}^n})_{\hat{f}_0}(t) \le x \right\} \\ &= \widehat{f}^*_0(x) = g(x)m \text{ a.e.} \end{aligned}$$

Note that Theorem 1 is essentially the theorem in [4].

IV. Proof of Theorem 3. For each $n=1, 2, \dots$, let r_n be an integer ≥ 2 . Denote by θ the normalized Haar measure on $X=\prod_{n=1}^{\infty} Z(r_n)$ and λ the usual restriction of Lebsque measure to [0,1]. Define a function $\varphi: X \to [0,1]$ via

$$arphi(arepsilon) = \sum_{n=1}^{\infty} rac{arepsilon_n}{p_1 p_2 \cdots p_n} \quad arepsilon = (arepsilon_1, \, \cdots, \, \cdots) \in X$$
 .

Then g is measure preserving; in fact, the following is well known.

LEMMA 6. E is measurable in X if and only if $\varphi(E)$ is measurable in [0, 1], and $\theta(E) = \lambda(\varphi(E))$. φ is an onto map and φ is one-to-one on X except for a countable set. Moreover,

$$\int_x h \circ \varphi d\theta = \int_0^1 h d\lambda$$

for all bounded λ measurable functions h on [0, 1].

LEMMA 7. Theorem 3 is true if $G \supset Z$.

Proof. By Lemma 1, we may assume G = Z. Define

$$a_{\scriptscriptstyle 0}(n) \, = \, rac{1}{2\pi} \int_{\scriptscriptstyle 0}^{2\pi} \! g(t) \, \sin\, nt \, dt \quad ext{for } n \in Z \; .$$

The values of the integrals involved are finite, by (i) of Lemma 2. Also $a_0 \in l^p(Z)$ because

$$\begin{split} (2\pi)^p \sum_{n \in \mathbb{Z}} |a_0(n)|^p &= \sum_{n \in \mathbb{Z}} \left| \int_0^{2\pi} g(t) \sin nt \, dt \right|^p \leqq \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \left| \int_0^{\pi/n} g(t) dt \right|^p \\ &= \sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} G_1 \left(\frac{\pi}{n}\right)^p \leqq \int_{\mathbb{R}} G_1^p \left(\frac{\pi}{x}\right) dx = \pi \int_{\mathbb{R}} G_1^p (y) y^{-2} dy \; . \end{split}$$

The last integral is finite by (ii) of Lemma 3. Similarly, if we define

$$b_{\scriptscriptstyle 0}(n) = rac{1}{2\pi} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 2\pi} g(t) \cos\,nt\,dt \quad ext{for } n\in Z$$

then $b_0 \in l^p(Z)$. So if we set $c(n) = b_0(n) - ia_0(n) = 1/2\pi \int_0^{2\pi} g(t)e^{-int}dt$ for $n \in Z$, then $c \in l^p(Z)$ and $\hat{c}(t) = g(t)$ a.e. [3, 31.44, (b)]. Since g is nonincreasing in $[0, 2\pi]$, we then have $\hat{c}^* = g\theta$ a.e.

470 CHUNG LIN

LEMMA 8. Theorem 3 is true is $G \supset \Pi^*Z(r)$, where $r \in N$, $r \ge 2$.

Proof. We may assume that $G = \Pi^* Z(r)$, by Lemma 1.

Let $X = Z(r)^{\aleph_0}$, the character group of G. Define $\varphi(\varepsilon) = \sum_{n=1}^{\infty} \varepsilon_n/r_n$ for $\varepsilon = (\varepsilon_n) \in X$, and note that Lemma 6 applies to φ . For a real number t, denote [t] by the greatest integer which is not greater than t. For $m \in N$, define

$$\gamma_m(t) = e^{i2\pi [r^m t]/r}$$

for $t\in[0,1]$. Then $\chi_m\circ \mathcal{P}(\varepsilon)=e^{i(2\pi/r)\varepsilon_m}$ where $\varepsilon\in X$ and ε_m is the mth component of ε . It follows that G is isomorphic to the group of finite products of elements in $\{\chi_m\circ \mathcal{P}\}_{m=1}^\infty$. In this proof we write $I_{m,\nu}$ for the characteristic function of the interval $[v/r^m, (v+1)/r^m]$

$$\chi_m(t) = \sum_{u=1}^{r^{m-1}} \left(\sum_{j=0}^{r-1} w^j I_{m,(u-1)r+j}(t) \right)$$

for θ a.e. t, where $w=e^{i(2\pi/r)}$. And hence

$$\chi_{m_1}^{l_1}(t) \cdots \chi_{m_k}^{l_k}(t) = \sum_{u=1}^{r^{m_1-1}} a_u \left(\sum_{j=0}^{r-1} w^{l_1 j} Im_1, (u-1)r + j(t) \right)$$

where $a_u^r=1$ for all $u=1, \dots, r^{m_1-1}$; $m_1>m_2>\dots>m_k$ and $0\leq l_1$, $l_2, \dots, l_k\leq r-1$, $l_1>0$.

Define a function f on G via

$$f(\chi^{l_1}_{m_1}\circarphi,\ \cdots,\ \chi^{l_k}_{m_k}\circarphi) = \int_X g\circarphi(arepsilon)\chi^{l_1}_{m_1}\circarphi(arepsilon)\ \cdots\ \chi^{l_k}_{m_k}\circarphi(arepsilon)darepsilon$$
 .

Define, for $u = 1, 2, \dots, r^{m_1-1}$ and $j = 0, \dots, r-1$,

$$k_{\scriptscriptstyle (u-1)\,r+j} = \int\! I_{\scriptscriptstyle m_1,\,(n-1)\,r+j}(t)g(t)dt,\, b_{\scriptscriptstyle (u-1)\,r+j} = a_u w^{jl_1} \;.$$

Then $\{k_0, k_1, \dots, k_{r^{m_1}-1}\}$ is a positive nonincreasing sequence, and

$$\left|\sum_{l=0}^{s}b_{l}\right|\leq r$$
 for all $s=0,1,2,\ldots,r^{m_{1}}-1$

In fact,

$$\sum\limits_{j=0}^{r-1} b_{(u-1)\,r+j} = \sum\limits_{j=0}^{r-1} a_u w^{jl_1} = a_u \sum\limits_{j=0}^{r-1} w^{jl_1} = 0$$
 .

It follows that

$$|f(\chi_{m_1}^{l_1}\circ \varphi, \ldots, \chi_{m_k}^{l_k}\circ \varphi)| = \left|\int_0^1 g(t)\chi_{m_1}^{l_1}(t), \ldots, \chi_{m_k}^{l_k}(t)dt\right|$$

$$\begin{split} &= \sum_{u=1}^{r^{m_{1-1}}} \Bigl(\sum_{j=0}^{r-1} a_u w^{jl_1} \int_{m_1, (u-1)\, r+j}(t) \, g\left(t\right) dt \Bigr) = \Bigl| \sum_{l=0}^{r^{m_{1-1}}} b_l k_l \Bigr| \\ &\leq k_0 \max_{0 \leq s \leq r^{m_{1-1}}} \Bigl| \sum_{l=0}^{s} b_l \Bigr| \leq k_0 r = r \int_0^{1/r^{m_1}} g(t) dt = r G\Bigl(\frac{1}{r^{m_1}}\Bigr) \,. \end{split}$$

Writing Σ' for a sum over all $(m_1, \dots, m_k, l_1, \dots, l_k)$ satisfying $k \in N$, $m_1 > m_2 > \dots > m_k \ge 0$, $0 < l_1 \le r - 1$, $0 \le l_j \le r - 1$ for j = 2, \dots , k, we obtain

$$egin{aligned} \|f\|_p^p &= \Sigma' \|f(\chi_{m_1}^{l_1}arphi, \; \cdots, \; \chi_{m_k}^{l_k}arphi)\|^p & \leq \Sigma' r^p G^p \Big(rac{1}{r^{m_1}}\Big) \ & \leq \sum_{m_1=0}^\infty r^{m_1} r^p G^p \Big(rac{1}{r^{m_1}}\Big) = r^{p+1} \sum_{m_1=0}^\infty r^{m_1-1} G^p \Big(rac{1}{r^{m_1}}\Big) \ & \leq r^{p+1} \sum_{m_1=0}^\infty (r^{m_1} - r^{m_1-1}) G^p \Big(rac{1}{r^{m_1}}\Big) \leq r^{p+1} \int_0^\infty G^p \Big(rac{1}{x}\Big) dx < \infty \end{aligned}.$$

So $f \in L^p(G)$ and hence $\hat{f} = g \circ \varphi$. It follows that $\hat{f}^* = gI_{[0,1]}$ m a.e.

LEMMA 9. Theorem 3 is true if G contains $Z(r^{\infty})$, $(r \ge 2)$.

Proof. We may assume that $G=Z(r^{\infty})$ by Lemma 1. Let \varDelta_{τ} be the group of r-adic integers; then $Z(r^{\infty})$ is a discrete group with $Z(r^{\infty})^{\hat{}}=\varDelta_{r}$. Define

$$\varphi(\varepsilon) = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{r^n} \varepsilon = (\varepsilon_n) \in \Delta_r$$

As in Lemma 6, φ is a measure preserving map from Δ_r onto [0, 1], and

$$\int_{A_{\tau}} h \circ \varphi d^{\theta} = \int_{0}^{1} h dt$$

for all bounded measurable functions h on [0,1], where θ is the normalized Haar measures on Δ_r . We write I_{m,s_1,\ldots,s_m} for the characteristic function of the interval

$$\left[\frac{r^{m-1}s_1+r^{m-2}s_2+\cdots+s_m}{r^m},\frac{r^{m-1}s_1+r^{m-2}s_2+\cdots+s_m+1}{r^m}\right].$$

For $m \in N$, define

(3)
$$\chi_m(t) = \sum_{s_1 \cdots s_m = 0}^{r-1} w_m^{s_1 + r s_2 + \cdots + r^{m-1} s_m} I_{m, s_1, \dots, s_m}(t)$$

where $w_m = e^{i(2\pi/r^m)}$. Then $\chi_m \circ \varphi(\varepsilon) = w_m^{\varepsilon_1 + r_{\varepsilon_2} + \dots + r^{m-1}} \varepsilon_m \theta$ a.e. where $(\varepsilon) \in \mathcal{A}_r$ and $\varepsilon_1, \dots, \varepsilon_m$ are the first m coordinates of (ε) . It follows that G is isomorphic to the group generated by $\{\chi_m \circ \varphi\}_{m=1}^{\infty}$. Define for

 $m, l \in N \text{ and } (l, r) = 1$

$$f(\chi_{\scriptscriptstyle m}^{\scriptscriptstyle l}) = \int_{{\scriptscriptstyle A_{\scriptscriptstyle m}}} \!\! g \circ \varphi(\varepsilon) \chi_{\scriptscriptstyle m}^{\scriptscriptstyle l} \circ \varphi(\varepsilon) d\theta$$

Then f is a function on G, and by (2) and (3),

$$f(\chi_m^l) = \int_0^1 g(t) \chi_m^l(t) dt$$

$$= \sum_{s_1, \dots, s_m=0}^{r-1} (w_m^l)^{s_1+rs_2+\dots+r^{m-1}s_m} \int I_{m,s_1,\dots,s_m}(t) g(t) dt.$$

Let $k_{r^{m-1}s_1+\cdots+s_m}=\int I_{m,s_1,\cdots,s_m}(t)g(t)dt$. Then $\{k_0,\,k_1,\,\cdots,\,k_{r^{m-1}}\}$ is a positive, nonincreasing sequence. Let $b_{r^{m-1}s_1+\cdots+s_m}=(w_w^l)^{s_1+rs_2+\cdots+r^{m-1}s_m}$. For any $0\leq s\leq r^m-1$, we write $s=r^{m-1}s_1+\cdots+s_m$ with $0\leq s_1,\,\cdots,\,s_m< r$. Then

$$\begin{split} \sum_{n=0}^{s} b_n &= \sum_{n=1}^{r^{m-1}s_1 + \dots + s_m} b_n \\ &= \left(\sum_{u=1}^{r^{m-2}s_1 + \dots + s_{m-1}} \sum_{h=0}^{r-1} b_{(u-1)\,r+h} \right) + \left(\sum_{j=0}^{s_m} b_{r^{m-1}s_1 + \dots + rs_{m-1} + j} \right) \end{split}$$

For each $u = 1, \dots, r^{m-2}s_1 + \dots + s_{m-1}$. Choose $0 \le u_1, \dots, u_{m-1} < r$ such that $(u - 1)r = r^{m-1}u_1 + \dots + ru_{m-1}$, and hence

$$\begin{split} \sum_{h=0}^{r-1} b_{(u-1)r+h} &= \sum_{h=0}^{r-1} b_{r^{m-1}u_1 + \dots + ru_{m-1} + h} \\ &= \sum_{h=0}^{r-1} \left(w_m^l \right)^{u_1 + ru_2 + \dots + r^{m-2}u_{m-1} + r^{m-1}h} \\ &= \left(w_m^l \right)^{u_1 + ru_2 + \dots + r^{m-2}u_{m-1}} \sum_{h=0}^{r-1} \left(w_m^l \right) r^{m-1}h \\ &= \left(w_m^l \right)^{u_1 + ru_2 + \dots + r^{m-2}u_{m-1}} \sum_{h=0}^{r-1} \left(e^{i(2\pi l)/r} \right)^h = 0 . \end{split}$$

The last equality holds because (l, r) = 1. This shows that

$$\left| \sum_{n=0}^{s} b_{n} \right| = \left| \sum_{i=0}^{s_{m}} b_{r^{m-1}s_{1} + \dots + rs_{m-1} + j} \right| \le s_{m} + 1 \le r$$

and hence

$$\begin{split} |f(\chi_m^l)| &= \left|\sum_{n=0}^{r^{m-1}} b_n k_n\right| \leq k_0 \max_{0 \leq s \leq r^{m-1}} \left|\sum_{n=0}^{s} b_n\right| \leq r k_0 \\ &= r \int_0^{1/r^m} g(t) dt = r G_1 \left(\frac{1}{r^m}\right) \end{split}$$

for all $m, l \in N$ and (l, r) = 1. Denote by Σ' the sum over $(m, l) \in N$, (l, r) = 1 and $0 \le l < r^m$. Then we have

$$||f||_p^p= \Sigma'|f(\chi_{\scriptscriptstyle m}^l)|^p\leqq \Sigma' r^p G_{\scriptscriptstyle
m i}^p iggl(rac{1}{r^m}iggr) \leqq \sum_{m=0}^\infty r^m r^p G_{\scriptscriptstyle
m i}^p iggl(rac{1}{r^m}iggr)$$
 .

As in Lemma 8, we conclude that $f \in L^p(G)$ and $\hat{f}^* = gI_{[0,1]}m$ a.e.

Patching Lemmas 7, 8 and 9 together gives the proof of Theorem 3.

I would like to extend my sincere thanks here to Professor K. A. Ross for his helpful suggestions.

The remaining open question is whether Theorem 3 holds if $G = \prod_{n=1}^{\infty} Z(r_n)$ where $r_n \in N$, $r_n \geq 2$ for all n and $\lim_{n \to \infty} r_n = \infty$.

REFERENCES

- 1. G. H. Hardy and J. E. Littlewood, some new properties of Fourier constants, Math. Annalen, 97 (1926), 159-209.
- 2. ———, some new propeties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9.
- 3. E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, 2 vols. (Springer-Verlag, Inc. Berlin-Heidelberg-New York 1963, 1970).
- 4. ———, Rearrangement of L^r Fourier Series on compact abeliangroups, Proc. London Math. Soc., (3) **29** (1974), 317-330.
- 5. R. A. Hunt, On L(p, g) spaces, L' Enseignement Math., 12 (1966), 249-275.
- 6. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. (Princeton, New Jersey, Princeton University Press, 1971).
- 7. A. Zygmund, Trigonometric Series, 2nd edition, 2 vols. (Cambridge Press 1959, reprinted 1968).

Received February 20, 1975.

UNVERSITY OF OREGON

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105 J. Dugundji

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,

Manufactured and first issued in Japan

3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics

Pacific Journal of Mathematics

Vol. 57, No. 2

February, 1975

Norman Larrabee Alling, On Cauchy's theorem for real algebraic curve.	the state of the s	315
Daniel D. Anderson, A remark on the lattice of ideals of a Prüfer domain		323
Dennis Neal Barr and Peter D. Miletta, A necessary and sufficient condition		
solutions to two point boundary value problems		325
Ladislav Beran, On solvability of generalized orthomodular lattices		331
L. Carlitz, A three-term relation for some sums related to Dedekind sums	s	339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, Images and pre-images	ages of localization	
maps		349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, Some new resu	ılts on odd perfect	
numbers		359
M. Edelstein and L. Keener, Characterizations of infinite-dimensional and	nd nonreflexive	
spaces		365
Francis James Flanigan, On Levi factors of derivation algebras and the r	radical embedding	
problem		371
Harvey Friedman, Provable equality in primitive recursive arithmetic wi	ith and without	
induction		379
Joseph Braucher Fugate and Lee K. Mohler, <i>The fixed point property for</i>		
finitely many arc components		393
John Norman Ginsburg and Victor Harold Saks, Some applications of ul		
topology		403
Arjun K. Gupta, Generalisation of a "square" functional equation		419
Thomas Lee Hayden and Frank Jones Massey, Nonlinear holomorphic s	emigroups	423
V. Kannan and Thekkedath Thrivikraman, Lattices of Hausdorff compac		
compact space		441
J. E. Kerlin and Wilfred Dennis Pepe, Norm decreasing homomorphisms		
algebras		445
Young K. Kwon, Behavior of Φ-bounded harmonic functions at the Wie		453
Richard Arthur Levaro, Projective quasi-coherent sheaves of modules		457
Chung Lin, Rearranging Fourier transforms on groups		463
David Lowell Lovelady, An asymptotic analysis of an odd order linear d	lifferential equation	475
Jerry Malzan, On groups with a single involution		481
J. F. McClendon, Metric families		491
Carl Pomerance, On multiply perfect numbers with a special property		511
Mohan S. Putcha and Adil Mohamed Yaqub, <i>Polynomial constraints for</i>	finiteness of	
semisimple rings		519
Calvin R. Putnam, Hyponormal contractions and strong power converge	ence	531
Douglas Conner Ravenel, Multiplicative operations in BP*BP		539
Judith Roitman, Attaining the spread at cardinals which are not strong l	imits	545
Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von		553
Brian Kirkwood Schmidt, <i>Homotopy invariance of contravariant functo</i>	rs acting on smooth	
manifolds		559
Kenneth Barry Stolarsky, The sum of the distances to N points on a spherical	ere	563
Mark Lawrence Teply, Semiprime rings with the singular splitting prope	erty	575
J. Pelham Thomas, Maximal connected Hausdorff spaces		581
Charles Thomas Tucker, II, Concerning σ -homomorphisms of Riesz spa		585
Rangachari Venkataraman, Compactness in abelian topological groups.		591
William Charles Waterhouse, <i>Basically bounded functors and flat sheave</i>		597
David Westreich, Bifurcation of operator equations with unbounded line		611
William Robin Zame, Extendibility, boundedness and sequential converg		Ų 1 1
holomorphic functions		619
notomorphic functions	<u> </u>	