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Let G denote an infinite locally compact abelian group
and X its character group. Let & be a suitable Haar measure
on X, and 1 < p <2. For a f-measurable function ¢ on X,
we define 0,4(t) = ({x € X: | $(x)| > ¢}) and ¢*(z) = inf {£ > 0: 6,(¢) =
x} for > 0. ¢* is called the nonincreasing rearrangement
of ¢. Note that even though ¢ is defined on X, the domain
of ¢* is (0,0). A nonnegative function g defined on (0, )
is called admissible if ¢ is nonincreasing and lim,.. g(x) = 0.

Theorems:
1. Let G be nondiscrete with a compact open subgroup

and g admissible. Then g|y = f*l ~»» where N is the set of
positive integers, for some fe€ L?(G) if X5, g(k)?k?-2 < oo,

2. Let G be nondiscrete with no compact open subgroup
agd g admissible. Then g = f*m a.e. for some feL?G) if
Og(w)PxP'2dx < oo,

3. Let G be an infinite discrete abelian group which con-
tains Z, Z(r~) or Z(r)® as a subgroup, ¢ admissible. Then
dlw,» =f*|(0,1)m a.e. for some fe L?G) if S:g(m)l’m?‘zda& < co,

1. Introduction. As usual the Fourier transform 7 of a function
FeLYG) is defined on X such that F(y) =§ fxdx, where )\ is a
fixed but arbitrary Haar measure on G. Fox? 1< p<2 feL"(G)
and ' is the conjugate exponent of p. The set of real numbers,
n-dimensional Euclidean space, the circle group, the integers, the r-
adic integers, the countable product of the group of integers modula
r and the subgroup of the circle whose elements have order a power
of » are denoted by R, R, T, Z, 4,, I Z(r) and Z(r*), respectively.
Also p will denote any number such that 1 < p < 2. Let m be 1/1/2x.
Lebesque measure on R.

Hardy and Littlewood [1], [2] characterized functions on Z such
that every rearrangement is the Fourier transform of a function in
L?(T), 2 < p < co. They also characterized functions on Z such that
some rearrangement is the Fourier transform of afunection in L?(T),
1< p < 2. Hewitt and Ross [4] generalized these results to arbitrary
compact infinite abelian groups. We are interested in the case of
LCA (locally compact abelian) groups. Here are our results.

THEOREM 1. Let G be nondiscrete with a compact open subgroup,
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464 CHUNG LIN

and g an admissible function. Then gy =f*]N for some f e L*(G)
if and only if Do g(k)?k?™* < oo. Moreover, there exists a constant
A, that depends on p only such that

(3 90e)" < 4,171,
for evrey such f.

THEOREM 2. Let G be a nondiscrete LCA group with no compact
open subgroup and g an admissible function. Then g = f* for some

feL*(G) if and only if Sog(x)”x”‘zdx < . Moreover, there exists
A, that depends only on p such that

([o@rarae)” = 4,011,
for every such f.

THEOREM 3. Let G be an infinite discrete abelian group con-
taining Z, Z(r*) or Z(r)™ as a subgroup and g an admissible function.
Then ¢|ou =f*1(0,1) for some f € L*(G) if and only if Slg(x)”x"‘zdx <
oo, Moreover there exists A, that depends only p sucig that

(|g@rada)” < 4,151,
for every such f.

Theorems 1 and 2 give us a complete solution for all nondiscrete
LCA groups. Theorem 3 holds for “almost all” discrete abelian groups,
but I am not able to settle the case where G contains I Z(r,) as
a subgroup, with r, — .

The forward implications “=" of all three theorems and the
existence of the constants A, are due to Hunt [5]; see Stein and
Weiss [6], Chapter V, Corollary 3.16.

II. A few lemmas.

LEMMA 1. Let G be a LCA group and H an open subgroup of
G. Let H- ={xeX:x =1 on H}. Then for each f,c L*(H), there
exists f e L*(G) such that F* = frm a.e. (where we use sgitable Haar
measures on X and X/H* for the definitions of F* and £¥).

Proof. Let f,e L?(H) and define f(x) = fo(x) if xe¢ H and
f(x) = 0 otherwise. Since H is open, f is still \-measurable in G
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and f e L?(G). Choose Haar measure A, on H to be the restriction
of v to H. Choose 0;: to be the normalized Haar measure on H*,
and 6, to be an arbitrary Haar measure on X. Then a Haar measure
0, on X/H"* exists so that Weil’s theorem applies [3; Vol. II, 28.54].
7 is clearly constant on each coset of H*. That is, f(x) =on(xHL)
for all ye X. A calculation, using Weil’s theorem shows that f* =
fo*m a.e.

For the rest of this paper, we let ¢ be a fixed admissible function
on (0, =), 1 < p<2and S g(x)*x**da is finite.
0

LEMMA 2. (i) Sg(ct)dm(t) < e for all ¢>0.
(ii) 0= S g(ct) sin xt dm(t) = S glct)ysinzgtdm (@) < o« for all
0 [1]
z>0,¢>0.

Proof. (i) Since
§:g<ct)pdm(t) = {oetpeame) = |, gtetyrtrram)

=L {"a@ream@ < - ,

we see that Slg(ct)”dm(t) is finite and hence Slg(ct)dm(t) is finite.
0 0
(ii) For k=12, -.., let
Y, = (—1)** Skm g(ct) sin at dm(t) .

(&

It is clear that v, = v, = v, = +-+ = 0 and v, — 0.
It follows that

§ g(ct) sin xt dt = Z( 1)*+y,
and hence
0 S:og(ct) sinzgtdt L vy, = S:/zg(ct) sin 2t dm(t) < oo .
This completes the proof of Lemma 2.

Define G.(x) = glzlg(ct)dm(t) for x € R. This is well-defined because
1 0
Sg(ct)dm(t) < oo by (i) of Lemma 2 and ¢ is bounded in between 1
and |x|.

LEMMA 3. (1) G.(x) = o(x'?) as £ — 0 and as € — oo.
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(if) Sch(x)”x‘zdm(x) < o for all ¢> 0.

Proof. See [7], Vol. I, Ch. I, §9.16.

LEMMA 4. There exists f € LP(R) such that F* =gm a.e.

Proof. Define, for xe€ R
) = Sjg(Zt) sin ot dm(t) .

Then, by part (ii) of Lemma 2 0 < @(x) < Gy(w/x), for £ > 0, because
0 o) = So 9(2t) sin 2t dm(t) < S “I* 9(2t) dm(t) = Gy(z/x). Since G, is

an even function, we have that Isv(wo)l < Gy(z/x) for all x€ R\{0}. Part
(ii) of Lemma 3 says that G,(z/x)e L*(R). If follows then that
@ e L*?(R). Define, for ne N,

P, (x) = S:g(Zt) sinxtdm(t) (x€ R).

Let # > 0. For each n, choose m € N such that |2mzn/x — n| < ©/x.
Then

@ (x)] < S:M/zg(Zt) sin zt dm(t) + X:m/xg(Zt) sin xt dm(t)l

2(2mx-— 1)7:)\ 27;1,75

= S:og(2t) sin zt dm(t) + g( — n‘

zf%
< 9@ + o(Z)E <o) + | s@yam)
= K
= P(@) + Gz<x) .
This shows that |@,@)]| £ |@@)] + | G(r/x)| for all xc R\{0}. Since
@,.(x) — @(x) pointwise and @(x), Gy(7/x) € L*(R), we must have ||p, —
®]|,— 0 be the dominated convergence theorem. So we can obtain
® by approximating @,. Let us compute @,:
20, (@) = 2i§ng(2t) sin ot dm(f) = g”g(zt) (@ — &) dm(t)
0 0
= gRg(—2t)1[_n,o](t)e-imtdm(t)
— | 9@ o u®e " am() .

Recall that the Haar measure m on R is chosen so that the in-
version theorem holds. We know that g(2¢)I;, .;(t) and g(—28)1;_, 4(t) €
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LYR) and @,¢ L?(R). Hence, by [3; Vol. 1I, 31.44 (b)], we have

—g@x) if 2=0
29p(x) = m a.e.
g(—22) if 2<0

Now define f = 2ip so that |f(@)] = g(|22]) m a.e. It is then easy
to check that f* = gm a.e., which is what we needed to prove.

. LEMMA 5. For each me N, there exists fe LP(R") such that
f* =gm a.e.

Proof. By Lemma 4, we may assume that n > 1. Define, for
ke N,

P(x) = S:g(Z”t) sin 2t dm(t)

P, (@) = S:g(Z”t) sin ot dm(2)

f(x“ e, xn) — 2”7:@(-71',,) sm &, e smo,
Lz Lo

y8inz,  sinz,
J

fk(xly ‘% xn) = 2'”2@1:(371
Xy Xy

Let m,=m Xm X ««« Xxmon R*, x = (2, -+, %,). Then

P(), Pu(2), Si; % ¢ I7(R) .

Therefore

[ 1fs= Firdm,

? .. |sinz, P

- o o (2] )

As in the proof of Lemma 4, we have ||®, — #|,—0, and so || f, —
Sllop—0 in L*(R"). Straight forward calculations show that
g(—2"x,) if —k =<2, <0 and z;€[—1, 1]
for 25 7=n
Ful@y vy ) ={—g@x) if 0< 2, <k and z;6[—1, 1]
for27<n
0 otherwise
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m, a.e. and hence

Fy ooy @) ={—g@z) if >0 |e<,255<n
0 otherwise

m, a.e. It follows that
m,{z e B [f(x)| > t} = 2"m{z, > 0: g(2"w,) > ¢} .
This in turn shows that for = > 0
(@) = inf {t > 0: 2"mfw, > 0: g(2"x)) > t} < @} = g(x)

m a.e., which completes the proof of Lemma 5.

II1. Proof for the nondiscrete case. Let @ be an infinite LCA
group. To prove Theorem 1 and Theorem 2, Lemma 1 and the
structure theorem [3, Vol. I, 24.30] shows that we may assume G =
K x R*, where K is a compact abelian group.

Proof of Theorem 1. In this #n =0, sothat G = K. Then there
exists f,€ L?(K), by [4], such that /|y = g|s.

Proof of Theorem 2. In this case #n > 0. By Lemma 5, there
exists f,e L?(R") such that f¥ = gm a.e. Define f(z, ) = fo(y) for
ze K and ye R*. Let m, =m X --. X m be the Haar measure on
R*, nx be the normalized Haar measure on K and \g,z« the Haar
measure on K X R" so that Weil’s theorem holds. It follows that
fis in L?(K x R*) and || fl|l, = |[foll,» Moreover, for y, € K’, L€ R",
we have

S if =1
0 otherwise.

P = {

Choose 03.z%, 0% and 6. the Haar measures on K x R*, K and R"
respectively, so that Planchevel’s theorem holds. Then Weil’s theorem
holds for these measures by [3, 31.46(c)]. Clearly 64 is the discrete
measure on K. Then for ¢ > 0

(Oxrn); () = SA RnI(z:[f(x>1>t)d0fchn

KX

:S SAIu:lf(x)bﬂdaffdaR"
R )k

SR”I(I:I?o(x)Dt)daRn - (012%)}0([‘/) ’

and it follows that for « > 0,
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F*@) = inf {t > 0: Oruze); (£) < @} = inf {t > 0: (Ozn)3,() < @)
= fi(@) = g(@)m a.e.

Note that Theorem 1 is essentially the theorem in [4].

IV. Proof of Theorem 3. For each n =1,2, ..., let », be an
integer = 2. Denote by 6 the normalized Haar measure on X =
I, Z(r,) and N\ the usual restriction of Lebsque measure to [0, 1].
Define a function @: X — [0, 1] via

q)(s):i_._f:n_.__ €=(51, oo, se)e X,
2=l PPy ¢+ c Dy

Then ¢ is measure preserving; in fact, the following is well known.

LEMMA 6. E is measurable in X if and only if ¢(E) is meas-
urable in [0, 1], and 6(E) = M@(E)). @ is an onto map and P 1is
one-to-one on X except for a countable set. Moreover,

[ opao = | ndr
for all bounded N measurable functions h on [0, 1].
LEMMA 7. Theorem 3 is true if GO Z.
Proof. By Lemma 1, we may assume G = Z. Define

ap(n) = 517? Sng(t) sinntdt for ne Z.

The values of the integrals involved are finite, by (i) of Lemma
2. Also a,€1?(Z) because

@7’ S, lau(n) 1 = Ezlgzzg(t) ain nt dtr <> ’ S:’"g(t)dtr

:;;;Zg GI(%)p = SRGf’ (%)dx =7 SRGf’(y)y‘zdy .

The last integral is finite by (ii) of Lemma 3. Similarly, if we define

by(n) = 1 Szng(t) cosntdt for ne Z
2w Jo

then bye I°(Z). So if we set c¢(n) = by(n) — iay(n) = 1/2% S g(t)e-irdt

for ne Z, then cel”’(Z) and ét) = g(t) a.e. [3, 31.44, (b)]. Since ¢
is nonincreasing in [0, 27], we then have é* = g@ a.e.
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LEMMA 8. Theorem 3 is true is GO II*Z(r), where re N, r = 2.
Proof. We may assume that G = II*Z(r), by Lemma 1.

Let X = Z(r)™, the character group of G. Define @(¢) = 3.2, ¢,/
for ¢ = (¢,) ¢ X, and note that Lemma 6 applies to #. For a real
number ¢, denote [t] by the greatest integer which is not greater
than t. For me N, define

Lult) = et

for ¢€[0, 1]. Then ), op(c) = ¢**/"*n where ¢€ X and ¢, is the mth
component of e. It follows that G is isomorphic to the group of
finite products of elements in {Y,°®}n-;. In this proof we write I,,
for the characteristic function of the interval [v/r™, (v + 1)/r™]

Xm(t) ___"'E1<'"'1 ijm, (u—l)'r+j(t))

u=1 \j=0

for 6 a.e. t, where w = ¢***/”, And hence

P r—1 A .
) - 240 = 3 au(F wiim, @ - Dr +50))
where a; =1 for all u =1, --., ™ m, >m, > -+ >m,and 0 = [,

l2y M) lké’r'— 1, l1>0-
Define a function f on G via

PO, oo 2o 9) = | 00212 2(E) - 1,0 P(de .
Define, for u =1,2, --.,rm*and =0, ---,7r — 1,
Eow_syris = gIml,m-mﬂ-(t)g(t)dt, bu-nrsi = QWM .
Then {k,, k&, ---, k,m_,} is a positive nonincreasing sequence, and
‘lz;bl’é r forall §=012 .. rm—1

In fact,

r—1

_24 b(u—!.)r+.1' =
=0

r—1 . r—1 .
> awt =a, 3w =0.
i=0 i=0

It follows that

PG e, - 2dte @) =| (0@, -, w0
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u=1 \j=0

r™iy
> bzkl\
=0

1/rmi

g(t)dt = TG(—-?%—I) .

8

Zb,‘gkorzrg

1-0

< k, max

0sssr™iag

0

Writing 3’ for a sum over all (my, .-, my, L, -+, 1,) satisfying ke
Nm>m>:++>m=00<,<r—1,0=];=r—-1 for j =2,
.+, k, we obtain

rm™

W2 = SN FOP, -+, XEP) P < z'wm( 1 )
1
r™

= i r™Mr?GP <7-1mf) = pPH i r"‘l‘lG”<

my=0 my=0

)

< PPt f_‘, (r™ — rml'l)G"<—}-—> < Pt SjG”( 1 >dw < oo,

my=0 rm™ -;}-

So f e L?(G) and hence F=gop. It follows that f* = 91,7 m a.e.
LEMMA 9. Theorem 3 is true if G contains Z(r”), (r = 2).
Proof. We may assume that G = Z(r*) by Lemma 1. Let 4,

be the group of r-adic integers; then Z(r) is a discrete group with

Z(r*)" = 4,. Define

PO =3 Sre = (c)ed, .

nl'r"

As in Lemma 6, @ is a measure preserving map from 4, onto [0, 1],
and

(2) Lrhomﬂ - g:kdt

for all bounded measurable functions % on [0, 1], where 6 is the
normalized Haar measures on 4,. We write I,,,,...,, for the charac-
teristic function of the interval

[r’"“s1 + ™+ eee + 8, TS, 4 P™ I, 4 v 5, + 1]
" ’ "
For m e N, define
r—1
(3) An(t) = 3 witrt T Tm e @)
§pece8y, =0

where w,, = ¢'®/"™, Then ¥, o @(e) = wi* ™"+ ¢ 0 a.e. where (¢) €
4, and ¢, ---, ¢, are the first m coordinates of (¢). It follows that
G is isomorphic to the group generated by {Y.-®}z.,. Define for
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m,leN and (I,r) =1

o) =, 9ot opleran
Then f is a function on G, and by (2) and (3),

f o) = [ g@rat

r—1

= Z (w}'n)s1+182+---+rm—1em§ o (t)g(t)dt

Let Kymotyp.ose, = gI,,,,,l,...,,m(t)g(t)dt. Then {ko, k, -+ -, kyn_s} is & posi-
tive, nonincreasing sequence. Let b,m—1,...4q, = (wh)rtret+rmTlam - For
any 0 =s<7r"—1, we write s ="', + ... + s, with 0=<s, ---,
8y < r. Then

,.m—lgl..).... +8p

Sbho= S b,
n=0

n=1

rm—2, 4.. g 71 Sm

= < P Z« bu- 1)r+h> <Z b M lgy 4 +"m—1+4>

=1 =0

For each u =1, .-., ™%, + «++ 4+ 5,_,. Choose 0 < u;, ++v, Upy < T
such that (u — 1)r = 4, + -+ + 74%,_,, and hence

r—1

r—1
thob(u—l)T+h = hz::)brm—lu1+---+rum_l+h

— E (,wz )u1+ru2+---+rm—2um_1+rm—1h
m,

= (it S o)
h=0

— (win)u1+'ru2+...+rm-—-2um_l Tz—,: (ei(zzl)/r)h =0.
h=0

The last equality holds because (I, ) = 1. This shows that

Sm
“~ JZ br””—‘al+ 78—+ =Sat 1=sr
and hence
[fO) | = max
0SssSrM—1 | =0

3, bk
S g(t)dt-rG( )

for all m,le N and (I, r) = 1. Denote by 2’ the sum over (m, ) € N,
(@, ry=1and 0=l <r™. Then we have
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1£1 = 1P = Fra) s Srere( =)
As in Lemma 8, we conclude that fe L*(®) and f* = gIj, ym a.e.
Patching Lemmas 7, 8 and 9 together gives the proof of Theorem 3.
I would like to extend my sincere thanks here to Professor
K. A. Ross for his helpful suggestions.
The remaining open question is whether Theorem 3 holds if G =
TIe* Z(r,) where r,€ N, r, = 2 for all » and lim,_, 7, = .
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