
Pacific Journal of
Mathematics

AN ASYMPTOTIC ANALYSIS OF AN ODD ORDER LINEAR
DIFFERENTIAL EQUATION

DAVID LOWELL LOVELADY

Vol. 57, No. 2 February 1975



PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 2, 1975

AN ASYMPTOTIC ANALYSIS OF AN ODD ORDER
LINEAR DIFFERENTIAL EQUATION

DAVID LOWELL LOVELADY

Let q be a continuous function from [0, oo) to (0, oo),
and let n be a positive integer. With respect to the equation
(̂2n+D _j_ gM _. Q̂  w e study the relationship between the exis-

tence of oscillatory solutions and the asymptotic behavior of
nonoscillatory solutions.

There is no additional hypothesis on q which will ensure that
every solution of

(1) u'2n+1) + qu = 0

is oscillatory. In particular, it follows from a result of P. Hartman
and A. Wintner [5] that there is a solution u of (1) such that

(2) (-l)V f c ) (*)>0

whenever t ;> 0 and 0 ^ k ^ 2n. We shall call a solution of u of (1)
strongly decreasing if and only if there is c ^ 0 such that (2) is true
whenever t ^ c and 0 ^ k tί 2n. Since we know that (1) has a strongly
decreasing solution, the best result one can hope for in an oscillation
theorem is that every eventually positive solution of (1) is strongly
decreasing. G. V. Anan'eva and V. I. Balaganskii [1] (see also C. A.
Swanson [7, p. 175]) have shown that if

(3) \°tzn'ιq{t)dt = oo ,
Jo

then every eventually positive solution of (1) is strongly decreasing.
Our first result extends this.

THEOREM 1. If (3) fails and the second order equation

(4) w"{t\ + ( 2 n i 2 ) 1 ( j " ( « - tf"-*q(s)ds)w{t) - 0

is oscillatory, then every eventually positive solution of (1) is strongly
decreasing.

Although the conclusion of Theorem 1 limits the asymptotic
behavior of nonoscillatory solutions of (1) (if u is nonoscillatory then
either u or —u is eventually positive), it does not in fact ensure the
existence of oscillatory solutions.
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THEOREM 2. Suppose that every eventually positive solution of
(1) is strongly decreasing. Then if u is a solution of (1), and if
any of u, u', u'\ , ui2n) has a zero in [0, oo]f u is oscillatory.

COROLLARY 1. With the hypotheses of Theorem 2, the solution
space Q of (1) has a basis each member of which is oscillatory, and
Q has a 2n-dimensional subspace each member of which is oscillatory.

COROLLARY 2. With the hypotheses of Theorem 1, the conclusions
of Corollary 1 hold.

Finally, we offer a comparison theorem.

THEOREM 3. Suppose that p is a continuous function from [0,
oo) to (0, oo) with p{t) ;> q(t) whenever t^O. Suppose also that every
eventually positive solution of (1) is strongly decreasing. Then every
eventually positive solution of

(5) u{2n+ι) + pu = 0

is strongly decreasing.

A. C. Lazer has shown [6, Theorem 1.2] that in the third order
case the existence of a nontrivial oscillatory solution of (1) implies
that every eventually positive solution of (1) is strongly decreasing.
The following example shows that this is not true in general.

EXAMPLE. Suppose 1 < r < 2. Now

r(r - l)(r - 2)(r - 3)(r - 4) > (r + 2)(r + l)r(r - l)(r - 2) ,

so a > 7, where

a = min {r(r - ΐ)(r - 2)(r - 3)(r - 4): 1 ^ r ^ 2}

and

7 = min {(r + 2)(r + l)r(r - l)(r - 2): 1 ^ r ^ 2}

- min {r(r - l)(r - 2)(r - 3)(r - 4): 3 ^ r ^ 4} .

Let n = 2, and, noting that α and 7 are negative, let β be a positive
number such that a > —/S < 7. Let g be given by #(£) = β(ί + 1)~5.
The polynomial equation

(6) r(r- l)(r - 2)(r - 3)(r - 4) + /S = 0

has two complex roots, so (1) has nontrivial oscillatory solutions.
On the other hand, (6) has a solution r in the interval (3, 4), and u,
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given by u(t) = (t + l) r, satisfies (1) and is not strongly decreasing.
The example is complete.

LEMMA. Suppose u is a solution o/(l), c ̂  0, and (—ϊ)ku{k)(c) >
0 for k = 0, ., 2n. Then (2) is true for 0 ^ t < c and k = 0, ,
2n.

Proof. Let t; be given on [ — c, 0] by v(t) = u(~t). If k = 0,
. . . , 2n + 1 then v(4)(i) = ( - l ) V * } ( - ί ) f so

v(2%+1)(0 - q(-t)v(t) = 0

and t;(Jfc)(-β) > 0 for - c ^ £ ̂  0 and yfc == 0, . . , 2n. Thus

( 7) V(ί) - v(-c) + Σ (^ + ^ ^ ( - c ) + Γ ^.Γff" g(-β)t;(β)dg
»-i m! J-c (2t^)!

if — c ^ t ^ 0. But clearly the solution of (7) is positive, so v{t) > 0
if - e S t ^ 0. Now, if A? = 0, . . . , 2n and -c S t ^ 0,

(m — Λ)!

so i;(fe)(ί) > 0, i.e., {-ϊ)ku[k){-t) > 0. The proof is complete.

Proof of Theorem 1. Assume that (3) fails. We shall show that
if there is an eventually positive solution of (1) which is not strongly
decreasing then (4) is nonoscillatory. Let u be an eventually positive
solution of (1) which is not strongly decreasing. Find a ^ 0 such
that u(t) > 0 if t ^ a. Now u(2ίι+1) < 0 on [α, oo), so u{2n) is eventually
one-signed. Since u{2n) is eventually one-signed, ^(2%~υ is eventually
one-signed. Continuing this, we see that there is c ̂  a such that none
of ufu\ •••, u{2n) has a zero in [c, oo). Let j be the largest integer
such that u(i) > 0 on [c, oo) if % <; j ' (We write w = ̂ (0)) Note that
j Φ 2n + 1. Now uιi+1) < 0 on [c, oo), so u(j) is bounded. Thus, if
j <Lk<L 2n, u{k)u{k+1) < 0 on [c, oo). But u{2n+1) < 0, so if j ^ k ^ 2^

then ^ ( & ) > 0 on [c, oo) if k is even and u(k) < 0 on [c, oo) if k is odd.
Since u{j+1) < 0 (recall how j was chosen), this says j + 1 is odd and
j is even. By hypothesis, j Φ 0. Suppose i < 2^. Now

(2n — j — 1)1 it

if t ^ c. Also, %(i~υ is increasing on [c, 00) since u[5) > 0, so, if s ^
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Since (2n - j - 1)1 (j - 1)! ^ (2n - 2)!, this says

VJ^~1)(£\ f°°

( 8 ) -1l""^-<^^i{S-^"Φ)dS

11, 1 T,\ 111, \T,\ "̂ -> —

2)

if t ^ c. Let v be given on [c, oo) by v = uU)/u{j υ , and note that
v > 0 on [c, oo). Now if t > c,

v\t) =

so (8) says

(9) v\t) + v(tγ <, -

But a classical result of M. Bδcher [2], [3] (see also C. de la Vallee
Poussin [8], A. Wintner [9], C. A. Swanson [7, Theorem 2.15, p. 63],
and W. A. Coppel [4, Theorem 4, p. 6]) says that the existence of
a positive solution of (9) implies that (4) is nonoscillatory. The proof
is complete, if j < 2n.

Suppose j = 2n. Now

ui2n)(t) ^ \θ°q(s)u(s)ds

(2w - 2)!

if t 2g c. But this and standard iteration methods say that there is
a continuously differentiable function w from [c, oo) to [u{2n~l){e), oo)
such that w(c) = u(2w~υ(c) and

(2τ^ — 2)!

if t^c. But w clearly satisfies (4) on [c, oo), and can be extended
to a nonoscillatory solution of (4) on [0, oo), so the proof is complete.
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Proof of Theorem 2. Let u be a nonoscillatory solution of (1).
If u is eventually negative, we may replace u by —u, so we assume
that u is eventually positive. Now there is c ^> 0 such that (2) holds
whenever t ^ c and k — 0, «. ,2w. Now our lemma says that if
Ic — 0, , 2w then u{k) has no zeroes in [0, c] and thus has no zeros
at all. The proof is complete.

Proof of Corollary 1. If k is an integer in [1, 2n + 1], let zk

be the solution of (1) such that zψ{0) = 0 if j Φ k - 1 and ^-"(O) =
1. Clearly {zl9 •••, z2n+1} is a basis for Q, and Theorem 3 says that
each zk is oscillatory. Also, if u is in the 2^-dimensional subspace
spanned by {z2, , zin+1}, then w(0) = 0 so u is oscillatory. The proof
is complete.

Corollary 2 is now immediate from Theorem 2 and Corollary 1.

Proof of Theorem 3. We shall assume the existence of an
eventually positive solution of (5) which is not strongly decreasing,
and show the existence of an eventually positive solution of (1) which
is not strongly decreasing. Let v be an eventually positive solution
of (5) which is not strongly decreasing. Let c Ξ> 0 be such that none
of v9 v', , vi2n) has a zero in [c, oo), and let j be the largest integer
such that v{i) > 0 on [c, oo) if % <ς j . By hypothesis, j Φ 0, and we
know that j is even. Now

v(t) ^

if t ^ c, and

(j - 1)

if ί ^ c, so

l o

 v ( ί ) = v ( c ) + u - 1 ) ! ( 2 ,

t

 1

 λ, [\t - sy-1v{j)(s)ds
- 1)! J*

if ί ^ c. Now (10) and standard iteration techniques say that there
is a continuous function u from [c, oo) to [0, oo) such that u(t) ^ v(t)
whenever t ^ c and such that

(11) M® = ^^^
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if t ^ c. The fact that u has only nonnegative values, together
with (11), says u(t) ^ v(c) whenever t ^ c; in particular, u has no
zeros in [c, oo). Differentiation of (11) yields that u satisfies (1) on
[c, oo), and u' > 0 on (c, oo), i.e., (2) is not true for k = 1 and t > c.
Clearly u can be extended to a solution of (1) on [0, oo), and this
solution is eventually positive but not strongly decreasing. The proof
is complete.
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