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Let M be a von Neumann algebra and let G be a group
acting on M by x-automorphisms of M. M is G-finite if for
every nonnegative element o in M with o = 0, there exists
a G-invariant normal state ¢ such that ¢(a) 0. The main
result in this paper asserts that M is G-finite if and only if
for every weakly relatively compact subset K of the predual of
M, the orbit of K under G is also weakly relatively compact.

Given a noncommutative dynamical system, that is, pairs (M, G)
where M is a von Neumann algebra and G is a group of =-automor-
phisms of M, one can ask whether or not there are sufficiently many
G-invariant normal states (we call such a case that (M, G) is G-finite
[oD?

First result along these lines is due to I. Kovacs and J. Szlics
[9] who obtained that (M, G) is G-finite if and only if there is a
G-invariant faithful normal projection of norm one from M onto the
fixed subalgebra M¢ under G (see also [11, 14]).

Recently, using results of Akemann [1] and Takesaki [15] con-
cerning the predul of a von Neumann algebra, together with the
Ryll-Nardzewski fixed point theorem ([5, 10]), F.J. Yeadon gave an
elegant proof of the existence of a trace in a finite von Neumann
algebra [16].

In this paper, we will give a Banach space like characterization
of the G-finiteness of (M, G) using weakly relatively compact subsets
of the predual M, of M which is a noncommutative extension of a
theorem of Hajian and Kakutani ([7, 8]) and in case where G is the
inner automorphisms of M, includes the result of F.J. Yeadon (see
also [16]). The result in this paper can be easily extended to groups
of identity preserving isometries of M.

2. Notations and a statement of a theorem. Let (M, G) be a
noncommutative dynamical system and M, be the predual of M, that
is, the Banach space of all bounded normal (or o-weakly continuous)
linear functionals on M([3, 12]). Let (T,9)(a) = (a?), ac M, ge G
and @€ M,, then T, is a linear isometry of M, onto M,.. We say
that (M, G) is G-finite if M hags sufficiently many normal states in
the sense that for every nonnegative element ¢ in M with a == 0, there
exists a G-invariant normal state ¢(that is, T,¢ = ¢, g€ G) such
that ¢(a) #= 0.
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Now we state our main theorem.

THEOREM. Let (M, G) be a noncommutative dynamical system,
then (M, G) is G-finite if and only if for every weakly relatively
compact (w.r.c.) subset K of My, the orbit of K under G, that is,
the set {T,6;9€ @, g€ K} is also w.r.c.

3. Proof of Theorem. “If” part of Theorem is valid under
a weaker assumption, more precisely to say that if for every ¢ in M,
with ¢ = 0, {T,6; g€ G} is w.r.c., then (M, G) is G-finite. However,
this is an easy consequence of lemma in [14] (see also [11]). To
prove the converse, we need the following lemma which concerns
with the continuity of the map (9, ®) — w-® from L.(M) x M, — M,
where L.(M) is the o-weakly continuous bounded linear maps of M
into M equipped with the weak operator topology and M, has the
W*-topology. For the later discussions, we state it in the following
form.

LEMMA 1. Let N be a von Neumann algebra with a set H of
normal *-homomorphisms of N into N. Suppose that for every ¢
N, (the predual of N) with ¢ =0, and every sequence {b,} in the
nonnegative part of the unit sphere S of N such that b, —0 (o-weakly),
D (D,)) — 0(n — =) uniformly for ®c H. Let {¢,} be a sequence in
N, which converges weakly to some ¢, in N, and {a,} be a sequence
of self-adjoint element in S which converges strongly to 0, then
6(P(a,)) — 0(n — o) uniformly not only for @< H but also for j.

Proof. Observe first that the o-weak topology restricted on S
is a compact Hausdorff topology with the neighborhood basis which
consists of all possible sets {a; a € S, |¥(a) —vi(a) | <& 1=1,2, -+, n}
with a,€ S, ¢ > 0 (real number) and v, € Ny(¢; = 0). Let H, = {a€S;
[(¢; — do)(@) | = ¢ for all j = ¢}, then H, is o-weakly closed subset of
S for each ¢ and S = Uz, H;. Now Baire’s category theorem says
that there are a natural numbers 4(0), m, an element a, in S and
(=12 +--,m) in N, with 4, = 0 for all ¢ such that

(@i ae S [¥a) — vila) | < 1S Ha -

Since @, — 0(n — o) strongly, by the spectral theorem, for any
given positive number ¢, there is a sequence {e,} of projections in M
such that e, — 1 (strongly) and || a,e, || < ¢/6 for each n. By the uni-
form boundedness theorem, we may assume that Sup; {||4;|[, |||} = 1
without loss of generality. For each @ € H, we have || @(e,a.e,) || <
lanenll = €/6, [[D(enan(l — e )| =< ||ane.|| = €/6 and || O((1 — e,)aqe,)) || =
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[|aze.|| < ¢/6 for each ». Thus we have

(35 — 6)(@(an) | = [ (95 — $)(P(€400es)) |
+ 1(5 — 6)(D(e,a.(1 — ¢,))) |
+ [(85 — ¢)(O((1 — e,)a.e,)) |
+ [(35 — $)(@((1 — e.)a.(l — ¢,))) |
S e+ (g5 — ¢)@((1 — e)an(l —e))]| .
Put 5,(9) = o((1 — e,)a,. (1l — e,) + D(e,)a.D(e,), then, since b,(P) —

Gy = (1 - Q(en))@(an)(l - @(6,,)) - (1 - @(3”))(10@(@,,) - @(en)ao(l - @(en)) -
(1 — D(e,))al(l — D(e,)), we have, by Schwarz’ inequality,

| 935(0a(9) — @) | = PV(P(1 — €4)) + 3| ¥ [[ ¥(P(1 — €,))'" .

Similarly, we have

| ¥ 1(P(€n)ac®(en) — a0) | = V(@1 — e,)) + 2| ¥ [| Ya(D(L — e,))" .

Since, by the assumption, (@1 — e,)) — 0(n — o) uniformly for
OcH and ©=1,2,--+, m, we can choose a natural number n(s)
(depends only on ¢) such that b,(9), @(e,)a,@(e,) € H,, for all n = n(e).
Thus, we have

[ (85 — $)(P((1 — e,)an(l — e,) | < 2¢
for all j = 4(0), all ®€ H and all n = n(¢). Since, for each j(j =
17 2’ M) /L.(O) - 1)

[(#5 = 6)(@(an)) | = |65 — 60| (P(@n)v;) |
= {l¢5 — g0l (@(@ )" [l $5 — S0 lI'*
= 2| g5 — 40| (P(az))}'”

and

[¢(@(aa)) | = [ || (P(an)v) | = {| §o | (P(a2))}'

where ¢; — ¢, = R,;[¢; — 60| (resp. ¢, = R,|¢|) is the polar decom-
position of ¢; — ¢, (resp. @) ([12]), a2 — 0 weakly implies, by the as-
sumption, that there is a positive integer 7(c)’ (depending only on ¢)
such that | (¢; — ¢))(9(a,))| < € and |4(P(a,)) | < ¢ for all ®eH, j=
1,2, ---,40) — 1 and all n = n(e).

Combining the above estimations, we have

| 6i(@(a,))| < 4¢ for all =» = max (n(e), n(c)’), all j
and all ®e¢ H. This completes the proof of Lemma 1.

Before going into the proof of theorem, we prepare the following:
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LEMMA 2. Keep the notations in theorem. If (M, G) is G-finite,
then, for every sequence {a,} of nonnegative elements in the unit
sphere S of M which converges weakly to 0, and every ¢ in M,,
(T,6)e,) — 0 uniformly for gcQG.

Proof. If not, there exists a positive number ¢, such that for
each positive integer n, we can choose a positive integer k(k(n) | «)
and g(n) € G such that

( *) I Tg(fn)¢(ak(n))i z & .

Put @, = b(n) then since {(b(n)*™} is a g-weakly relatively com-
pact subset of SN M* (where M* is the positive portion of M), there
is a o-weakly cluster point a(a = 0) of {(b(n)**™}. Thus for every
positive number 9, every G-invariant normal state 0 and every posi-
tive integer %, there is a natural number i(n)(i(n) > n and i(n) | )
such that

|o(@) — p(B)y“™) [ <8  mn=12---.

Since p is G-invariant, o((b(i(n))?“™) = o(b(i(n))) — 0(i(n) — o).
Thus |o(a)| =<6 for every ¢ and the G-finiteness of (M, G) implies
e = 0. Hence this contradicts with the inequality (»). Thus (T,4)(a,)—
0(7 — o) uniformly for ge G and the proof is completed.

Proof of Theorem. Suppose (M, G) is G-finite. We will prove
that for every w.r.c. subset K of M,, {T,¢; 4 Kg<c G} is also w.r.c.
To prove this, we have only to show that for every orthogonal
sequence {e(n)} of projections, lim,_. T,é(e(n)) = 0 uniformly for g G
and ¢€ K. If not, there is a positive number ¢ such that for each
positive integer k, there are a natural number n(k)(n(k) 1 <), g(k)e G
and ¢,€ K such that

(%) | Tymsu(e(mE)) | = ¢

By Eberlein-Smulian’s theorem ([4]), there is a subsequence {¢;x} of
{6:}(k(D) 1 o) such that ¢, — ¢ weakly (p — ) for some ¢, in M,.
Now e(n(k(p))) — 0(p — o) strongly, which implies by Lemma 2 and
Lemma 1, that | T, 6w (e(m(k(p))) | — 0(p — ) and this contradicts
with the inequality (+*). This completes the proof of theorem.

4. Remarks. Theorem is a generalization of [11]. We should
remark that the result of theorem can be easily extended to groups
of Jordan Automorphisms of M. [13] When G is a semi-group of
normal Jordan homomorphisms ([13]) of M into M, by an easy modifi-
cation of Lemma 1 and Lemma 2, “only if” part of theorem is valid,
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however, as the following example shows, the converse assertion does
not hold in general, even if G is a semi group of =-isomorphisms of
M into M.

Let M = L~(]0, 1)) be the abelian von Neumann algebra of essen-
tially bounded complex-valued functions on [0, 1) with respect to
Lebesque measure . Let us consider two measurable transformations
g, and g, defined as follows ([2, 8]): g.(®) = 3w(mod 1), w € [0, 1), g.(w) =
2w + 1/3(resp. = (0 — 1/3)/2, w € [0, 1/3)(resp. w € [1/3, 1)). For each
fe M, let (0.f)w) = f(9.w), [0, 1) and (2./) (@) = f(9.w), w € [0, 1).
Let H be the semi-group of normal =-homomorphisms of M into M
generated by @, and @,. Then by [2] and [8], we can easily check
that for each ¢ € M.(= L'([0, 1)), {¢-®, & H}is w.r.c.. Thus by [6]
and Lemma 1, for every w.r.c. subset K of M,, {¢°®, ®c H, s K}
is also w.r.c. However, since g, is ergodic with respect to g and 2
is not invariant under ¢,, (M, H) has no H-invariant functionals in
M.,.

The above example implies that the Ryll-Nardzewski fixed point
theorem is not valid in general without the assumption of distal
action of H.
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