
Pacific Journal of
Mathematics

HOMOTOPY INVARIANCE OF CONTRAVARIANT FUNCTORS
ACTING ON SMOOTH MANIFOLDS

BRIAN KIRKWOOD SCHMIDT

Vol. 57, No. 2 February 1975



PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 2, 1975

HOMOTOPY INVARIANCE OF CONTRAVARIANT
FUNCTORS ACTING ON SMOOTH MANIFOLDS

BRIAN K. SCHMIDT

It is sometimes possible to prove that a functor is homotopy
invariant using only a knowledge of the domain and range
categories of the functor. It is known, for example, that
every covariant or contravariant functor from the category
of simplicial complexes (with continuous mappings) to the
category of countable groups is homotopy invariant. This
result has been extended to covariant, but not contravariant,
functors with domain the category of smooth manifolds. In
the contravariant case, the proof breaks down because certain
mappings are not differentiable. This fault will be corrected
in this paper. Among other results, it will be shown that
every contravariant functor from the category of smooth
manifolds to the category of countable groups is homotopy
invariant.

The results mentioned above are proved in [4]. As in [4], we
will use the word "cofunctor" to mean a contravariant functor. ^
will denote any full subcategory of the category of smooth manifolds
which contains the real line R and is closed under the operation
product-with-/2. & will denote any subcategory of the category of
sets in which every object is countable. Let C°°(R, R) denote the
monoid of smooth mappings from R to R under composition. Let
D denote the monoid dual to C°°(R, R). In light of paragraphs 15
and 16 of [4], Theorem 11 of [4] may be restated as follows:

THEOREM 2. // D cannot act faithfully on any countable set,
then every cofunctor Δ\ ̂  —> <& is homotopy invariant.

The revised approach •

3. Suppose that D acts faithfully on a set J5. We will prove
that B is uncountable. Let / denote the closed interval [0, 1]. For
each xe I, let Px be the set of all p e D such that the following two
conditions are satisfied:

4. we (x, 1) =* p(w) e (x, 1)
5. w$ (x, 1) => p(w) — w.
It is easy to verify that:
6. If p' ePw, pe Px, and w ^ x, then ppf e Pw.
7. Observe that every subset of /has a greatest lower bound in

/. Hence we may define, for each b e Bf a number λ(δ) e I which is
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the greatest lower bound of {x e I\ p e Px => pb = δ}.

THEOREM 8. Consider xe I and beB with x Φ λ(δ). Then λ(δ) <

x<=> pb — b for all p e Px.

Proof. (<=-) Obvious. (=>) If λ(6) < x, there exists w e I such
that λ(δ) <; w < x and p'b — b for all pr ePw. Consider any pePz.
By 6, we have pp'ePw. Hence pprb = 6, and so pb = b.

9. Let F denote the set of all f e D such that w 0 (0, 1) implies
f(w) — w and such that / has an inverse in D. Recall that the
order of composition is reversed in D. Given pePx and f e F, it is
easy to verify that f~γpf e P / ω . Hence, for fixed feF, we have
a mapping p H* f~γpf from Px to Pf{x). This mapping has an inverse,
namely p H^ fpf~\ So:

10. Given xel and f eF, a one-to-one correspondence between
P* and Pfix) is provided by p κ-> f^pf.

THEOREM 11. For cm̂ / /ei* 7 αraZ δe J5, f~\X(b)) = λ(/δ).

Proof. Consider X G J such that x is not equal to /~1(λ(δ)) or
λ(/δ). It suffices to prove that / "^(δ)) < x «=> λ(/δ) < #. Our ap-
proach is as follows:

(i)

Mb) < fix)
|(ϋ)

p'b = δ, for all p' e Pf{x)

I (ίίi)
f~1pfb — δ, for all p&Px

| ( i v )

pfb = fb, for all pePx

| (v)

λ(/δ) < X

(i) follows from the fact that / and / " ' preserve order. Note that
since * Φ /''(Mb)), f(x) Φ λ(δ). So (ii) follows from Theorem 8. (iii)
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follows from 10. (iv) is obvious, and (v) follows from Theorem 8.

Theorem 11, restated categorically as in [4], asserts that λ is
a natural transformation.

THEOREM 12. There exists beB with 0 < λ(&) < 1.

Proof. There exists r e D such that r(l/2) = 1/2 and r(w) = 3/4
for all w e [3/4, 1]. Note that pr = r for all p e P3 / 4. Hence, for any
b e B, prb = rb for all p e P3/4. So X(rb) ̂  3/4 for any beB.

There also exists p' e P1/4 such that p\l/2) = 3/4. Since r(p'(1/2)) =
3/4 and r(l/2) = 1/2, we have p'r Φ r. Since D acts faithfully on
By there exists beB such that p'rb Φ rb. And since p' e P1/4, λ(r&) >̂
1/4 for this 6.

In summary, we have found beB such that 1/4 ^ λ(rδ) ^ 3/4.

THEOREM 13. λ maps 5 onto (0, 1).

Proof. By Theorem 12 there exists 6 e B with λ(6) e (0, 1). Given
any x e (0, 1), there exists f eF such that f'λ(X(b)) = x. Then, by
Theorem 11, \(fb) = a.

COROLLARY 14. B is uncountable.

And by Theorem 2:

COROLLARY 15. Every cofunctor Δ\ ^ —* <& is homotopy in-
variant.

This proves, for example, that every cofunctor from smooth
manifolds to countable groups is homotopy invariant.

Categories without R.

16. ,Until now, we have been assuming that R was an object
in ^. Hence we cannot at present apply Corollary 15 to the category
of compact smooth manifolds. Let us correct this problem. As was
noted in paragraphs 15 and 16 of [4], we may use the circle S1 to
take the place of R. Viewing S1 as the closed interval [ — 1,2] with
end points identified, we may define Px to be the set of all smooth
mappings from S1 to S1 satisfying 4 and 5. Likewise, we may
replace R by S1 in 6 through 15 without problems. So Corollary
15 applies to any full subcategory ^ of the category of smooth
manifolds which contains S1 and is closed under the operation product-
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with-S1.

Other generalizations*

17. If we replace the word "smooth" by "continuous" everywhere
in this paper, the proofs remain valid. We have spoken only of
smooth structures because our results were already established for
continuous structures [4]. Likewise, the proofs given here can be
applied to functors as well as cofunctors, with only slight modification.
Thus neither Top(J, I), Top(JΪ, R), Top(S\ S1), C°°(J?, R), C^S1, S1), nor
their duals can act faithfully on a countable set.

Conclusion*

List A. simplicial complexes
topological manifolds
topological manifolds with boundary
compact topological manifolds
compact topological manifolds with boundary
smooth manifolds
smooth manifolds with boundary
compact smooth manifolds
compact smooth manifolds with boundary
pairs in any category above

List B. countable groups
countable rings
countable dimensional vector spaces over a field K
countable dimensional algebras over a field K

18. Putting together the results of this paper and [4], we have
shown that every functor or cofunctor from a category in List A
to a category in List B is homotopy invariant.
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