Pacific Journal of Mathematics

HOMOTOPY INVARIANCE OF CONTRAVARIANT FUNCTORS ACTING ON SMOOTH MANIFOLDS

BRIAN KIRKWOOD SCHMIDT

Vol. 57, No. 2

February 1975

HOMOTOPY INVARIANCE OF CONTRAVARIANT FUNCTORS ACTING ON SMOOTH MANIFOLDS

BRIAN K. SCHMIDT

It is sometimes possible to prove that a functor is homotopy invariant using only a knowledge of the domain and range categories of the functor. It is known, for example, that every covariant or contravariant functor from the category of simplicial complexes (with continuous mappings) to the category of countable groups is homotopy invariant. This result has been extended to covariant, but not contravariant, functors with domain the category of smooth manifolds. In the contravariant case, the proof breaks down because certain mappings are not differentiable. This fault will be corrected in this paper. Among other results, it will be shown that every contravariant functor from the category of smooth manifolds to the category of countable groups is homotopy invariant.

The results mentioned above are proved in [4]. As in [4], we will use the word "cofunctor" to mean a contravariant functor. \mathscr{C} will denote any full subcategory of the category of smooth manifolds which contains the real line R and is closed under the operation product-with-R. \mathscr{C} will denote any subcategory of the category of sets in which every object is countable. Let $C^{\infty}(R, R)$ denote the monoid of smooth mappings from R to R under composition. Let D denote the monoid dual to $C^{\infty}(R, R)$. In light of paragraphs 15 and 16 of [4], Theorem 11 of [4] may be restated as follows:

THEOREM 2. If D cannot act faithfully on any countable set, then every cofunctor $\Delta: \mathcal{C} \to \mathcal{C}$ is homotopy invariant.

The revised approach.

3. Suppose that D acts faithfully on a set B. We will prove that B is uncountable. Let I denote the closed interval [0, 1]. For each $x \in I$, let P_x be the set of all $p \in D$ such that the following two conditions are satisfied:

4. $w \in (x, 1) \Longrightarrow p(w) \in (x, 1)$

5. $w \notin (x, 1) \Longrightarrow p(w) = w$.

It is easy to verify that:

6. If $p' \in P_w$, $p \in P_x$, and $w \leq x$, then $pp' \in P_w$.

7. Observe that every subset of I has a greatest lower bound in I. Hence we may define, for each $b \in B$, a number $\lambda(b) \in I$ which is

the greatest lower bound of $\{x \in I | p \in P_x \Longrightarrow pb = b\}$.

THEOREM 8. Consider $x \in I$ and $b \in B$ with $x \neq \lambda(b)$. Then $\lambda(b) < x \Leftrightarrow pb = b$ for all $p \in P_x$.

Proof. (\Leftarrow) Obvious. (\Rightarrow) If $\lambda(b) < x$, there exists $w \in I$ such that $\lambda(b) \leq w < x$ and p'b = b for all $p' \in P_w$. Consider any $p \in P_x$. By 6, we have $pp' \in P_w$. Hence pp'b = b, and so pb = b.

9. Let F denote the set of all $f \in D$ such that $w \notin (0, 1)$ implies f(w) = w and such that f has an inverse in D. Recall that the order of composition is reversed in D. Given $p \in P_x$ and $f \in F$, it is easy to verify that $f^{-1}pf \in P_{f(x)}$. Hence, for fixed $f \in F$, we have a mapping $p \mapsto f^{-1}pf$ from P_x to $P_{f(x)}$. This mapping has an inverse, namely $p \mapsto fpf^{-1}$. So:

10. Given $x \in I$ and $f \in F$, a one-to-one correspondence between P_x and $P_{f(x)}$ is provided by $p \mapsto f^{-1}pf$.

THEOREM 11. For any $f \in F$ and $b \in B$, $f^{-1}(\lambda(b)) = \lambda(fb)$.

Proof. Consider $x \in I$ such that x is not equal to $f^{-1}(\lambda(b))$ or $\lambda(fb)$. It suffices to prove that $f^{-1}(\lambda(b)) < x \Leftrightarrow \lambda(fb) < x$. Our approach is as follows:

$$f^{-1}(\lambda(b)) < x$$

 $\int (i)$
 $\lambda(b) < f(x)$
 $\int (ii)$
 $p'b = b$, for all $p' \in P_{f(x)}$
 $\int (iii)$
 $f^{-1}pfb = b$, for all $p \in P_x$
 $\int (iv)$
 $pfb = fb$, for all $p \in P_x$
 $\int (v)$
 $\lambda(fb) < x$

(i) follows from the fact that f and f^{-1} preserve order. Note that since $x \neq f^{-1}(\lambda(b))$, $f(x) \neq \lambda(b)$. So (ii) follows from Theorem 8. (iii)

follows from 10. (iv) is obvious, and (v) follows from Theorem 8.

Theorem 11, restated categorically as in [4], asserts that λ is a natural transformation.

THEOREM 12. There exists $b \in B$ with $0 < \lambda(b) < 1$.

Proof. There exists $r \in D$ such that r(1/2) = 1/2 and r(w) = 3/4 for all $w \in [3/4, 1]$. Note that pr = r for all $p \in P_{3/4}$. Hence, for any $b \in B$, prb = rb for all $p \in P_{3/4}$. So $\lambda(rb) \leq 3/4$ for any $b \in B$.

There also exists $p' \in P_{1/4}$ such that p'(1/2) = 3/4. Since r(p'(1/2)) = 3/4 and r(1/2) = 1/2, we have $p'r \neq r$. Since D acts faithfully on B, there exists $b \in B$ such that $p'rb \neq rb$. And since $p' \in P_{1/4}$, $\lambda(rb) \geq 1/4$ for this b.

In summary, we have found $b \in B$ such that $1/4 \leq \lambda(rb) \leq 3/4$.

THEOREM 13. λ maps B onto (0, 1).

Proof. By Theorem 12 there exists $b \in B$ with $\lambda(b) \in (0, 1)$. Given any $x \in (0, 1)$, there exists $f \in F$ such that $f^{-1}(\lambda(b)) = x$. Then, by Theorem 11, $\lambda(fb) = x$.

COROLLARY 14. B is uncountable.

And by Theorem 2:

COROLLARY 15. Every cofunctor $\Delta: \mathscr{C} \to \mathscr{G}$ is homotopy invariant.

This proves, for example, that every cofunctor from smooth manifolds to countable groups is homotopy invariant.

Categories without R.

16. Until now, we have been assuming that R was an object in \mathscr{C} . Hence we cannot at present apply Corollary 15 to the category of compact smooth manifolds. Let us correct this problem. As was noted in paragraphs 15 and 16 of [4], we may use the circle S^1 to take the place of R. Viewing S^1 as the closed interval [-1,2] with end points identified, we may define P_x to be the set of all smooth mappings from S^1 to S^1 satisfying 4 and 5. Likewise, we may replace R by S^1 in 6 through 15 without problems. So Corollary 15 applies to any full subcategory \mathscr{C} of the category of smooth manifolds which contains S^1 and is closed under the operation productwith- S^1 .

Other generalizations.

17. If we replace the word "smooth" by "continuous" everywhere in this paper, the proofs remain valid. We have spoken only of smooth structures because our results were already established for continuous structures [4]. Likewise, the proofs given here can be applied to functors as well as cofunctors, with only slight modification. Thus neither Top (I, I), Top (R, R), Top (S^1, S^1) , $C^{\infty}(R, R)$, $C^{\infty}(S^1, S^1)$, nor their duals can act faithfully on a countable set.

Conclusion.

List A.	simplicial complexes
	topological manifolds
	topological manifolds with boundary
	compact topological manifolds
	compact topological manifolds with boundary
	smooth manifolds
	smooth manifolds with boundary
	compact smooth manifolds
	compact smooth manifolds with boundary
	pairs in any category above
List B.	countable groups

countable groups countable rings countable dimensional vector spaces over a field Kcountable dimensional algebras over a field K

18. Putting together the results of this paper and [4], we have shown that every functor or cofunctor from a category in List A to a category in List B is homotopy invariant.

References

- 1. Peter Freyd, Abelian Categories, Harper and Row, 1964.
- 2. John W. Keesee, On the homotopy axiom, Ann. of Math. (2) 54 (1951), 247-249.
- 3. James R. Munkres, *Elementary Differential Topology*, Princeton University Press, 1966.
- 4. Brian K. Schmidt, On the homotopy invariance of certain functors, Pacific J. Math., 54 (1974), 245-256.
- 5. Edwin H. Spanier, Algebraic Topology, McGraw-Hill Book Co., 1966.

Received February 21, 1973.

SOUTHERN ILLINOIS UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024 J. Dugundji

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E.F. BECKENBACH

R. A. BEAUMONT

University of Washington

Seattle, Washington 98105

B. H. NEUMANN

F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. **39**. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics Manufactured and first issued in Japan

Pacific Journal of Mathematics Vol. 57, No. 2 February, 1975

Norman Larrabee Alling, <i>On Cauchy's theorem for real algebraic curves with boundary</i>	315
Dennis Neal Barr and Peter D. Miletta, A necessary and sufficient condition for uniqueness of	323
solutions to two point boundary value problems	325
Ladislav Beran, On solvability of generalized orthomodular lattices	331
L. Carlitz, A three-term relation for some sums related to Dedekind sums	339
Arthur Herbert Copeland, Jr. and Albert Oscar Shar, Images and pre-images of localization	
maps	349
G. G. Dandapat, John L. Hunsucker and Carl Pomerance, <i>Some new results on odd perfect numbers</i> .	359
M. Edelstein and L. Keener, <i>Characterizations of infinite-dimensional and nonreflexive</i>	
spaces	365
Francis James Flanigan, On Levi factors of derivation algebras and the radical embedding	
problem	371
Harvey Friedman, <i>Provable equality in primitive recursive arithmetic with and without induction</i> .	379
Joseph Braucher Fugate and Lee K. Mohler. <i>The fixed point property for tree-like continua with</i>	
finitely many arc components	393
John Norman Ginsburg and Victor Harold Saks. Some applications of ultrafilters in	
topology	403
Ariun K. Gupta. <i>Generalisation of a "square" functional equation</i>	419
Thomas Lee Havden and Frank Jones Massey. <i>Nonlinear holomorphic semigroups</i>	423
V. Kannan and Thekkedath Thrivikraman, <i>Lattices of Hausdorff compactifications of a locally</i>	
compact space	441
J. E. Kerlin and Wilfred Dennis Pepe, <i>Norm decreasing homomorphisms between group</i>	445
Young K Kwon Rehavior of Φ -bounded harmonic functions at the Wiener boundary	453
Richard Arthur Levaro, Projective quasi-coherent sheaves of modules	457
Chung Lin Rearranging Fourier transforms on groups	463
David Lowell Loweledy. An asymptotic analysis of an odd order linear differential equation	475
Jarry Malzan, On groups with a single involution	481
I E McClendon Metric families	401
Corl Domerance. On multiply perfect numbers with a special property	511
Mohan S. Dutcha and Adil Mohamed Vacub. <i>Polynomial constraints for fuiteness of</i>	511
semisimple rings	519
Colvin P. Putnam Hunonormal contractions and strong nowar convergence	531
Douglas Conner Devenal Multiplicative operations in BD*BD	530
Judith Poitman Attaining the ground at earlingle which are not strong limite	545
Judin Kolunan, Analining the spread at cardinals which are not strong timus	545
Kamumulti Saitâ Canuna of * automombiana and imaniant mana of you Numumu da dama	552
Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras	553
Kazuyuki Saitô, <i>Groups of *-automorphisms and invariant maps of von</i> Neumann algebras Brian Kirkwood Schmidt, <i>Homotopy invariance of contravariant functors acting on smooth</i>	553
Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds	553 559
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrance Taply. Seminring singe with the singular splitting property. 	553 559 563 575
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property L Palham Thomas Maximal connected Hausdooff mages. 	553 559 563 575 581
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property	553 559 563 575 581
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property	553 559 563 575 581 585
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property J. Pelham Thomas, Maximal connected Hausdorff spaces Charles Thomas Tucker, II, Concerning σ-homomorphisms of Riesz spaces Rangachari Venkataraman, Compactness in abelian topological groups 	553 559 563 575 581 585 591
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property	553 559 563 575 581 585 591 597
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property J. Pelham Thomas, Maximal connected Hausdorff spaces Charles Thomas Tucker, II, Concerning σ-homomorphisms of Riesz spaces William Charles Waterhouse, Basically bounded functors and flat sheaves David Westreich, Bifurcation of operator equations with unbounded linearized part 	 553 559 563 575 581 585 591 597 611
 Kazuyuki Saitô, Groups of *-automorphisms and invariant maps of von Neumann algebras Brian Kirkwood Schmidt, Homotopy invariance of contravariant functors acting on smooth manifolds Kenneth Barry Stolarsky, The sum of the distances to N points on a sphere Mark Lawrence Teply, Semiprime rings with the singular splitting property	 553 559 563 575 581 585 591 597 611 619