
Pacific Journal of
Mathematics

CONCERNING σ -HOMOMORPHISMS OF RIESZ SPACES

CHARLES THOMAS TUCKER, II

Vol. 57, No. 2 February 1975



PACIFIC JOURNAL OF MATHEMATICS
Vol. 57, No. 2, 1975
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If L is a Riesz space (lattice ordered vector space), a
Riesz homomorphism of L is an order preserving linear map
which preserves the finite operations "V" and "Λ". It was
shown in our previous paper ["Homomorphisms of Riesz
spaces," Pacific J. Math.] that there is a large class a of
spaces such that if L belongs to a and ψ is a Riesz homomor-
phism from L onto an Archimedean Riesz space, then ψ pre-
serves the order limit of sequences. In this paper the list
of members of a is extended. It is further shown that there
is a large class β of spaces with the property that if L be-
longs to a and φ is a Riesz homomorphism of L into an
Archimedean Riesz space then φ preserves the order limit
of sequences.

This paper is a continuation and extension of Tucker [4]. The
notation and terminology of Tucker [4] will be used.

LEMMA 1. Suppose L is a Biesz space with the principal pro-
jection property, K is an Archimedean Riesz space, and φ is a
Riesz homomorphism of L into K with the property that if
{bi, b2, &3, } is a countable orthogonal subset of L+ such that
b — V bif then φ(b — Σ*=i bt) —* Θ, then φ preserves the order limits
of sequences.

Proof. Suppose flf f2, f3, is a sequence of points of L such
that /i ^ /2 ^ /3 ^ ^ θ and A A = θ Suppose, further, that n
is a positive integer. For each i let gi = /< — (l/2*)/i, ht = \f P (pgt A gd,
and bi = hi — hi+1. Consider 6£ and b3- where j > i. Now bό ^ hi+1

and bi ^ gλ — hi+1, so that θ — hi+ι A (#i — hi+1) ^ bj A bi. Thus

{£>!, 62, 63, } is a countable orthogonal set.
Since gx ^ 6t for each i, gt is an upper bound of {blf b2, b3, •••}.

Suppose a is a point such that gι — a ^ bi for each i and a^θ.
Let i be a positive integer and let β be the projection of a on b^
Then gι-β^bi. Now 6, + Σ;=l h + ht+ι = h = g, and bt A (Σ^i h +
h i + 1 ) = θ s o t h a t β A (^ i — hi = θ. S i n c e gι — β ^ b u g^ — b i ^ β

which implies (gx — bt) A β = β, so that β = θ. Thus for each i,
a Abi = θ. Now gι ^ δ< so that g1 ^ Vi=i 6, V α = Σ U &,- + « =
î — λ<+1 + cc = g1 — &<+1 + α which implies hi+1 ^ α.

Now gϊ A gΐ = θ which implies gϊε(gΐ)d. As /̂  is the projection
of gt on gf, hi A gϊ = θ.

Without loss of generality we may assume that (1/2")/! ^ a. Then

585



586 C.T. TUCKER

hi A 97 = 0 implies a Λ 97 = 0 for each i. The relationships (l/2w)/i ^ a
and (1/2*)/! ̂  #Γ imply that (1/2")/, ̂  α Vgτ = * + gT- So that, (1/2*)/ -
a ^ flri". It follows that -(1/2*)/ + a ^ -gj, -(1/2*)/ + α ^ -97 +
flrf

+ = $r«, and a^g,+ (1/2*)/ = / . But Λ / = # so that α = θ. Thus
0i = V δi By hypothesis

~ Σ ft*) > * , (̂ffi ~ (Λ - Λy+0) > * , and 9(λy+1) > θ .

Since

hi+1^gf+i^θ, Ψ{9t) >θ.

Thus if there is a point 7 such that <p(ft) ^Ί^θ, then 7 S φ((lJ2r)f,) =
fύ which implies 7 = # since K is Archimedean.

We can replace Theorem 8 of [4] with a slightly stronger
statement:

THEOREM 8'. Suppose L is a Riesz space with the principal
projection property, M is a uniformly closed ideal of L with the
property that if {fl9 f2y /3, } is a countable orthogonal subset of M+

and there is a point h of L such that V ft — h there is an unbound-
ed nondecreasing positive number sequence cu c2, c3, such that
{Cifif 2̂/2, C3/3, •••} is bounded, and π is the natural map of L onto
L/M. Then L/M has the principal projection property and πPf =
Pπfft for each point f of L.

The argument given for Theorem 8 in [4] proves this statement
also.

This leads to the following definition:

The statement that the Riesz space L has Property A means
that if {/L, /2, /8, } is a countable orthogonal subset of L+ and V ft
exists, then there exists a point g of L and a nondecreasing undounded
positive number sequence cl9 c2, cz, such that g ^ ctft for each i.

Note that if order convergence is stable in L, then L has Property
A. On the other hand Property A is more general than stability of
order convergence since Rx has Property A but, as pointed out in
[4], order convergence is not in general stable in Rx.

THEOREM 2. Suppose L is a Riesz space with the principal
projection property and with Property A and φ is a Riesz homomor-
phism of L into an Archimedean Riesz space K. Then φ preserves
the order limits of sequences.
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Proof. Suppose {bu b2, δ3, } is a countable orthogonal subset
of L+ such that b = V &<• There exists a nondecreasing unbounded
positive number sequence el9 c2, cz, and a point # such that cjbt ̂  #.
Then φ(b - Σ ύ δ i ) = 9>(V<W+Λ) ^ 9>(Vci+1g) = l/cj+1 φ(g). Since if
is Archimedean φ(6 — Σί=i bx)-+θ. By Lemma 1, φ preserves the
order limits of sequences.

DEFINITION. The statement that L has Property B means that
if {fl9 f2y /3, } is a countable orthogonal subset of L+ such that
V fi exists, then there is a nondecreasing unbounded positive number
sequence clf c2y c3, such that V (lAO/< exists.

THEOREM 3. Suppose L is a Riesz space with the principal
projection property, with Property B, and with the property that if
φ is a Riesz homomorphism of L onto an Archimedean Riesz space
and M is the kernel of φ then PmL is a subset of M for each point
m of M. Then each Riesz homomorphism of L into an Archimedean
Riesz space preserves the order limit of sequences.

Proof. Suppose K is an Archimedean Riesz space and φ is a Riesz
homomorphism of L into K. Now K may be embedded in a com-
plete Riesz space in a manner which preserves the order limits of
sequence (see Nakano [3], Judin [1], or Luxemburg, and Zaanen [2],
p. 191) and φ may be extended to a homomorphism φ from L into
the completion of K. Since φ preserves the order limits of sequences
if φ does, K may be taken to be complete without loss of generality.
For this argument it will be sufficient to assume that K has the
principal projection property.

Suppose {&!, b2, 63, } is a countable orthogonal subset of L+

such that b = V &*• As L has Property B there is an unbounded
nondecreasing sequence of positive numbers clf c2, cz, such that
V (lAO&i exists. Let g denote V (Ϊ M)^. Then Pgb = b.

Suppose a is such that θ <: a ^ φ(b — Σ?=i &*) for each n. Let
β = Paφg. Thus β A φ((g - (l/n)b)+) = θ9 β ^ (l/n)φ(b), and β = θ as
K is Archimedean. So that ae{φg}d.

Let H be the image of φ in {φg}d and let φt be the map of L
onto H. Since H is Archimedean, the kernel M of φx has the pro-
perty that PgL(Z.M. Now Pgb = b so beM, i.e., φ(b)e{φg}dd which
implies a — θ.

By Lemma 1, φ preserves the order limits of sequences.

COROLLARY 4. Suppose L is a σ-complete Riesz space with the
property that every Riesz homomorphism of L onto an Archimedean
Riesz space preserves the order limits of sequences. Then every Riesz
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homomorphism of L into an Archimedean Riesz space preserves the
order limits of sequences.

Proof. Since L is ^-complete it has Property B. If every Riesz
homomorphism of L onto an Archimedean Riesz space preserves the
order limits of sequences then by Theorems A and B of [4], every
uniformly closed ideal of L is a α-ideal. By Theorem 6 of [4] every
uniformly closed ideal M of L has the property that if m belongs
to M then PmL is a subset of M. The result follows from Theorem 3.

Even if L were assumed to be complete and the mappings as-
sumed to be one-to-one, Corollary 4 would not remain true if the
requirement that every Riesz homomorphism of L onto an Archi-
medean Riesz space preserves the order limits of sequences were
dropped. For instance let L be the space of bounded sequences and
M be the uniformly closed ideal consisting of all sequences converging
to zero. Let π be the natural map from L onto L/M. Let K be
L x L/M. Then L is complete and K is Archimedean. The map φ of
L into K defined by φ(x) = (x, π(x)) is an injection which does not
preserve the order limits of sequences.

If L is any Riesz space such that there exists a uniformly closed
ideal M of L such that the natural map of L onto L/M does not
preserve the order limits of sequences, then an Archimedean Riesz
space K can be constructed so that L can be injected into K without
preserving the order limits of sequences.

Clearly if L is a Riesz space with the property that if φ is a
Riesz homomorphism of L into an Archimedean Riesz space then φ
preserves the order limits of sequences then any Archimedean Riesz
space K which is the image of L under a Riesz homomorphism has
the property also. For example, let M be the space of all measurable
functions defined on the interval [0, 1] without identifying functions
which differ only on a set of measure zero and let M be the space
of all measurable functions defined on the interval [0, 1] identifying
functions which differ on a set of measure zero. Clearly M has a
point with Property c and M is an Archimedean quotient of iίf.
Thus every Riesz homomorphism of M into an Archimedean Riesz
space preserves the order limits of sequences.

So far several examples have been given of spaces with the
property that every Riesz homomorphism into an Archimedean Riesz
space preserves the order limits of sequences: Rx, B[0, 1], the space
Q of Example 2 of [4], the space of all measurable functions, Lp,
1 ^ P < °°, lP, 1 ^ P < °°, c0, the space of all functions defined on
the x-axis with compact support, and the space of Example 11 of
[4]. All these spaces have the principal projection property. In the
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following it will be shown that Ba[0,1], the αth Baire class of functions
defined on the interval [0, 1], a < ω19 is uniformly complete, does not
have the principal projection property, but has the property that
every Riesz homomorphism into an Archimedean Riesz space preserves
the order limits of sequences.

THEOREM 5. Ba[0, 1] is uniformly complete.

Proof. Suppose fl9 f2, /3, is a sequence of functions in Ba[0, 1]
converging relatively uniformly to /. If / is bounded, then it is in
Ba[0, 1] as Ba[0, 1] is closed with respect to uniform convergence
(relative uniform convergence with regulator the constant function 1).
Suppose / is unbounded. Suppose further that / is in Bί[0, 1]. For
each positive integer n, n Λ / is in Ba[0, 1]. Let T(g) = g/(l + g) for
each g in Bi[0, 1]. As T preserves continuity and pointwise conver-
gence T(n Λ /) = n/(n + 1) Λ T(f) is in Ba. The sequence {n/(n + 1) Λ
T(f)} converges uniformly to T(f) which is thus in Ba[0, 1]. Therefore
there exists a sequence glf g2, g3, of functions in 5a_1[0, 1] con-
verging pointwise to T{f). (If a is a limit ordinal then i?α_i[0, 1] =
\J7>a Br[0, 1].) These functions may be chosen so that 0 <* gt :g 1.
Then the sequence {n/(n + 1) gn} is a sequence of functions in Ba_1[0f 1]
converging pointwise to T(f). Since 0 ̂  n/(n -f 1) gn < 1, then
T~ι{nj(n + l)gn) is a sequence of functions in i?«_i[0, 1] converging
pointwise to /.

Since BJfi, 1] is uniformly complete it can not have the principal
projection property unless it is ^-complete and Ba[0, 1], a < ω19 is
known not to be α-complete. (If a — ωί then Ba[0, 1] = B[0, 1], the
space of all Baire functions on [0, 1], which is σ-complete.)

THEOREM 6. If φ is a Riesz homomorphism of JBJO, 1] {a > 0)
into an Archimedean Riesz space then φ preserves the order limits
of sequences.

Proof. It will be shown that Ba[0, 1] has a point with Property
c and the desired result will follow from Theorem 3 of [4].

Suppose flf f2, /3, is a sequence of points of J5J0, 1] such that
f1 <Ξ f2 <; fs g ••• and V A is the constant function 1. Denote by
USB^ilO, 1] the set of all functions which are the greatest lower
bounds of countable subsets of ΰα_1[0, 1], For each fp there is a
sequence liP of functions in USB^O, 1] such that l1P^l2p^kp^ ^fP

and V hp = fp- L e t h = VP£Ϊ hp-

Then ll9 l29 i3, is a sequence of functions in USBa_y[0, 1] such
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that lγ ^ l2 ^ lz ^ , li <ί fi9 and V h is the constant function 1.
Now θ A h is in USB^O, 1] and Σ?=i * Λ ί, is in J/SJS^fO, 1]. For
each point x there is a positive integer N such that # Λ ln{x) = 0 for
each positive integer n^> N. (Order convergence for a bounded non-
decreasing sequence in Ba[0, 1] is pointwise convergence.)

Thus for each x, ΣΓ=i θ Λ ^(ίc) exists. For each positive integer
n there exists a sequence gln, g2n, gZn, of functions in I?α_i[0, 1] such
that gln ^ g2n^ gZn^ and A 9in = Σ L i ί Λ i , . Then let #„ =
AisnQnf So that #!, βr2, ^3, is a sequence of functions in i^.JO, 1]
converging pointwise to ΣΓ=i ^ Λ i . Thus ΣΓ=i ί Λ ί * is in jBα[0, 1]
and ΣΓ=i θ Ali^ Σ*-i /* for e a c ^ positive integer w.
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