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If an abelian topological group (G, t) satisfies Pontryagin
duality, then the ί-compact subsets and the weak compact
subsets coincide. Hence if tut2 are group topologies on an
abelian group G such that (G, tt) i = 1,2 satisfy Pontryagin
duality and have the same set of continuous characters, then

1* Introduction* Our object is to prove the following two
theorems:

THEOREM 1.1. Let (G, t) be an abelian topological group which
satisfies Pontryagin duality. Let w be the weak topology induced
by the set X of all its continuous characters. Then a subset A of
G is t-compact iff it is w-compact.

THEOREM 1.2. Let tlf t2 be topologies on an abelian group G such
that (G, ti), i = 1, 2, is a topological group that satisfies Pontryagin
duality. If the sets of continuous characters of (G, tλ) and (G, t2)
coincide, then t1 — t2.

Glicksberg ([5] Theorem 1.2 and Corollary 2.4) proves the above
two results for the special case of locally compact abelian groups.
Glicksberg's work has been generalized in different manners. One
such is to start with a locally compact group (G, £), G not necessarily
abelian, consider the weak topology w induced by the class of t-
continuous irreducible unitary representations of G and ask whether
compactness with respect to t and w coincide. This corresponds to
Theorem 1.1 above. Corresponding to Theorem 1.2 one can ask
whether if tlf t2 are locally compact topologies on a not necessarily
abelian group G such that both (G, ίx) and (G, t2) are topological
groups and have the same set of continuous irreducible unitary
representations, is tx = t£ These two questions were answered in
the affirmative by Hughes ([3], Theorem 1, page 18, and Corollary
1.3, page 19). (See also [4] Theorems 1 and 2.) Another direction
of generalization of Glicksberg's results is to regard the set X of
continuous characters of G as Horn (G, T) where T is the circle group
and examine the following question. Let G and H be topological
groups and Horn (G, H), the set of all continuous homomorphisms
of G into H. Do compactness with respect to the pointwise convergent
topology and the compact-open topology on Horn (G, H) coincide?
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Gorson and Glicksberg ([1] Theorem 1) asserted that if G is such
that the closure of every compactly generated subgroup is of second
category in itself, this is indeed so. Most recently Namioka [10]
has remarked that the proof of this assertion in [1] is incomplete.
Using different methods, Namioka ([10], Theorem 3.3) proves the
above result in the special case when G is strongly countably compact.
However the assertion of Corson and Glicksberg is proved by using
an independent approach by Hughes ([3] Theorem 3). (See also [4]
Theorem 4.)

Our objective in this paper is to examine Glicksberg's results in
[5] referred to above for the case of abelian topological groups which
satisfy Pontryagin duality and which are not necessarily locally
compact abelian groups. That such groups exist is well known (cf.
for instance, Kaplan [7] and Venkataraman [11]). The proofs in
this direction of generalization are much simpler than those in the
other directions mentioned above. Our proofs avoid measure theory
and Fourier transforms and use only results on the topologies on
function spaces. In the case of Theorem 1.1, our approach to the
proof is the same as Hughes ([3] Theorem 3) but becomes different
when we invoke the use of Bohr compactifications. The proof of
Theorem 1.2 depeds upon a result of mine ([11] Theorem 5.3).

2. Proofs of Theorems 1.1 and 1.2. For notation and terminology
relating to topological groups we follow Hewitt and Ross [2].

Let T denote the circle group. A homomorphism of a group G
to T is called a character of G. The set X of all continuous characters
of a topological group G endowed with the compact-open topology
and multiplication defined point wise is a topological group, called the
character group of G. G is said to satisfy Pontryagin duality if
the evaluation map τG: G-+ω (where ω is the character group of
X) defined by τG(x)χ — χ(x) for every χe X and xe G is a topological
isomorphism.

DEFINITION 2.1. Let G be an abelian topological group, X the
character group of G, W a limited neighbourhood of 1 in T, i.e. a
symmetric connected neighbourhood of 1 which is contained in {z e
T\ \z - 1| ^VΊΓ} (cf. Kaplan [7], page 650). Let Sz>G. By the
W'-character closure of S (in symbols TF-chr. cl. S) we mean

0{χ-1(W)\χeX, χ(S)czW}.

If S = W-clax. cl. S, we say that S is W-character closed.
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PROPOSITION 2.2. Let G satisfy Pontryagίn duality. Then the
following properties hold:

(P^: G has sufficiently many continuous characters.
(P2): Let U be W-character closed subset of G for some closed

limited neighbourhood W of 1 in T such that for every compact
subset K of G with K containing the identity element e of G, U Π K
is a neighbourhood of e relative to K. Then U is a neighbourhood
of e in G.

(P3): G admits a family of W-character closed subsets as a
neighbourhood base at e for some limited neighbourhood W of 1 in T.

Proof. Any topological group that satisfies Pontryagin duality
has sufficiently many continuous characters and hence G satisfies P :.
That such a group satisfies the property P2 is proved in Theorem
5.3 of Venkataraman [11]. We use the notations in the beginning
of this section. By Proposition 2.9 of Kaplan [7], {P{K\ W)\K* a
compact subset of X) is a neighbourhood base at the identity element
of ω where W is (any) one limited neighbourhood of 1 in T and
P(K*, W) = {/ G ω I f(K*) c W}. It is easy to see that for each
subset K* of X, P(K*, W) is a TF-character closed subset of ω.
Thus ω admits a neighbourhood base of TF-character closed subsets
at the identity element, i.e. ω satisfies property P3. Since by hy-
pothesis G satisfies Pontryagin duality, τG:G~*o) is a topological
isomorphism. It follows that G satisfies P3. The proof of our pro-
position is complete.

For notation and terminology on topologies of function spaces
we follow Kelley ([8], Chapter 7).

Proof of Theorem 1.1. Clearly any ^-compact subset of G is w-
compact as w is coarser than t. So let A be a w-compact subset
of G. As G satisfies Pontryagin duality, the topology t on G is the
compact open topology ^ when G is regarded in the canonical manner
as the character group of X. Also in this context, the weak topology
w on G determined by X is the topology & of pointwise convergence
on X, Thus what we are required to prove is that if A c G and A
is ^-compact, then A is ^compact. From the sixth of the six
equivalent statements in Hughes' version of the Arzela-Ascoli Theorem
(cf. Hughes [3], Proposition 15), it suffices to consider compact subset
D of X and any sequence {fn}n in A, and prove the following: (*)
There is a subsequence {fnjc}k of {fn}n such that {fnje\D}k is equicon-
tinuous.

Since A is by hypothesis ^-compact, a fortiori {f\D\fe A}, which
we shall denote by A\D9 is ^-compact. So by Theorem 5, Grothendieck
[6], A\D is sequentially compact. Therefore there exists a subsequence
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{fnk}k of {fn}n such that {fn]c}k is convergent pointwise on D to some
/ in A. Now since G satisfies Pontryagin duality and any compact
abelian group satisfies Pontryagin duality, G can be regarded as the
set of all continuous characters of X and bX. Here bX is the so
called Bohr compactificatίon of X, i.e. bX is the compact character
group of (G, d) where d is the discrete topology on G. Let p be
the canonical map of X to bX which identifies a continuous character
of (G, t) with a (continuous) character of (G, d). It is easily verified
that in our case p is a continuous monomorphism of X onto a dense
subgroup of bX. Furthermore the topology on G of pointwise con-
vergence on bX (equivalently p{X)) is the same as ^ . Thus the
subset A c G we started with can be regarded as a ^-compact
subset of continuous functions from bX to T and the subsequence
{fnk}k of {fn}n is pointwise convergent on p(D) to / in A. Let i*7 be
the closed subgroup of bX generated by D. The topology on A \F of
pointwise convergence on bX is clearly compact as A is ^-compact.
This implies that the topology ^ on A I*, of pointwise convergence
on p(D) is compact. Furthermore it is Γ2. For if g,heA\F and # ^
h, as F is the closed subgroup generated by p(D), there exists χ in
^(D) such that g(χ) Φ h(χ). So p(D) distinguishes members of A\F.
So by Theorem 2 page 220 Kelley [8], the topology ^ is T2. The
topology έ^2 on A|^ of pointwise convergence on F is also compact as
A is compact with respect to pointwise convergence on bX, and clearly
^ 2 is coarser than ^ . So ^ 2 = ^ . . Since the subsequence {fnk}k

converges pointwise on p(D) to / it now follows that it converges
pointwise on F to / . As the topology on T is given by an invariant
metric, by Osgood's theorem (Theorem 9.5, Kelley, Namioka and co-
authors [9]) the set of points of equicontinuity of {fnk\F}k is residual
in F and, as F is a closed subgroup of the compact group bX, hence
itself is compact, this residual subset is nonvoid. As the topology
on T is given by an invariant metric it follows that {f«k\F} is equi-
continuous on F. As p is a continuous monomorphism of X to bX it
follows that {fnk\p-ilF)}k is equicontinuous. As p~ι{F) clearly contains
D, we have that {fnk\D}k is equicontinuous. Thus the statement (*)
above has been proved. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. Let tlf t2 be topologies on the abelian
group G such that ((?, t%) i = 1, 2 are topological groups that satisfy
Pontryagin duality and have the same set X of continuous characters.

It follows that (G, ί<) i = 1, 2 have the same Bohr compactification
bG and the canonical maps of ((?, tt) i = 1, 2 to bG are the same map
p. By Theorem 1.1 it follows that ((?, tt) i = 1, 2 have the same
family of compact subsets. Now let W be any closed limited neigh-
bourhood of 1 in T. As ((?, tt) ί = 1, 2 have the same set X of
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continuous characters, they have the same family of TF-character
closed subsets (cf. Definition 2.1 above). By Proposition 2.2 as (G,
tt) i = 1, 2 satisfy Pontryagin duality, they satisfy properties Pl9 P2

and P3. Thus every I^-character closed neighbourhood of the identity
of (G, ίj), because of the property P2 of (G, ί2) and because (G, ί̂
have the same family of compact subsets, will be a ΫP-character
closed neighbourhood of identity of (G, t2) and vice versa. Because
(G, tt) i = 1, 2 have property P3, it will follow that they both have
the same family of neighbourhoods of identity as neighbourhood
bases. As they are both topological groups, it will follow that tγ —
t2. This completes the proof of Theorem 1.2.
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