Pacific Journal of Mathematics

COVERING THEOREMS FOR FINITE NONABELIAN SIMPLE GROUPS. V

J. L. BRENNER, ROBERT MYRL CRANWELL AND JAMES RIDDELL

Vol. 58, No. 1

March 1975

COVERING THEOREMS FOR FINITE NONABELIAN SIMPLE GROUPS. V.

J. L. BRENNER, R. M. CRANWELL, AND J. RIDDELL

In the alternating group A_n , n = 4k + 1 > 5, the class C of the cycle $(12 \cdots n)$ has the property that CC covers the group. For n = 16k there is a class C of period n/4 in A_n such that CC covers A_n ; C is the class of type $(4k)^4$.

1. Introduction. It was shown by E. Bertram [1] that for $n \ge 5$ every permutation in A_n is the product of two *l*-cycles, for any *l* satisfying $[3n/4] \le l \le n$. Hence A_n can be covered by products of two *n*-cycles and also by products of two (n-1)-cycles. But if *n* is odd the *n*-cycles in A_n fall into two conjugate classes C, C', and similarly for the (n-1)-cycles if *n* is even, so that the quoted result does not decide whether

$$(1) CC = A_n.$$

The question was decided affirmatively for n = 4k + 2 and negatively for n = 4k, 4k - 1 in [2]. The question is now decided affirmatively in the remaining case n = 4k + 1, $n \neq 5$.

THEOREM 1. For n = 4k + 1 > 5, the class C of the cycle $(12 \cdots n)$ has property (1).

The proof is in §§2-4.

Regarding the product CC', it was shown in [2] that CC' covers A_n $(n \ge 5)$ if n = 4k, 4k - 1, while if n = 4k + 1, 4k + 2, CC' contains all of A_n but the identity.

By an argument quite similar to the proof of Theorem 1, we have proved

THEOREM 2. For n = 16k, the class C of type $(4k)^4$ in A_n has property (1).

The proof and some related matters are discussed in §5. Note that the class in Theorem 2 has period n/4.

2. The case n = 9. Let a = (123456789). For every class in A_9 , a conjugate b of a can be found such that ab represents (lies in) that class. This assertion is the substance of the table below.

<i>b</i>	<i>ab</i>
a^{-1}	1
(193248765)	(14) (38)
(176235894)	(13) (25) (48) (79)
(132987654)	(193)
(134765289)	(18) (24) (379)
(132798465)	(174) (369)
(184523796)	(135) (274) (698)
(137259486)	(15) (276) (3849)
(123794865)	(1384) (2769)
(132798654)	(17693)
(189623574)	(13) (25) (47986)
(132869745)	(18764) (359)
(132845697)	(18746) (359)
(159348726)	(162495) (38)
(186974532)	(3598764)
a	(135792468) ~ a
(125678934)	(315792468)

3. A lemma. In §3 and §4, C will denote the class of the cycle $a = (12 \cdots n)$ in A_n .

LEMMA. If n = 4k + 1 > 5, then CC contains the type $2^{2k} 1^1$.

Proof. If $n \equiv 1 \pmod{8}$, then x =

 $(n n - 3 n - 2 n - 1, n - 4 n - 7 n - 6 n - 5; \dots; 9678, 5234; 1)$

is conjugate to a and

$$ax = (1 \ 3)(2 \ 4)(5 \ 7)(6 \ 8) \cdots (n - 4 \ n - 2)(n - 3 \ n - 1).$$

If
$$n \equiv 5 \pmod{8}$$
, $n > 13$, then $y =$

$$(n n - 3 n - 2 n - 1, n - 4 n - 7 n - 6 n - 5; \dots; 21 18 19 20,$$

17 14 15 16; 13 96 10, 12 78 11; 5234, 1)

is conjugate to a and

$$ay = (1 \ 3)(2 \ 4)(5 \ 10)(68)(7 \ 11)(9 \ 12)(13 \ 15)(14 \ 16) \cdots$$

 $(n - 4 \ n - 2)(n - 3 \ n - 1).$

If n = 13 use the last 13 letters of the above y. (The pattern of y differs from that of x only in the last block of 8 letters between semi-colons, $13 \ 9 \cdots 11$, in which the number of reversals is odd, whereas in every other such block of 8 letters in either x or y, the number of reversals is even.)

4. The induction. The induction proceeds from n-4 to n = 4k + 1. The induction hypothesis is: For every permutation T in A_{n-4} , there are two (n-4)-cycles d_1 and d_2 , both in the class of the (n-4)-cycle $(1 \ 2 \cdots n - 6 \ n - 5 \ n - 4)$, and also two other (n-4)-cycles d'_1 and d'_2 , both in the class of $(1 \ 2 \cdots n - 6 \ n - 4 \ n - 5)$, such that $T = d_1d_2 = d'_1d'_2$.

Let $S \ (\neq 1)$ be a permutation in A_n . To show that CC contains S we consider several cases. In each case we find a conjugate S_1 of S, and a certain permutation g in A_n , such that $T = S_1 g^{-1}$ fixes the letters n, n-1, n-2, n-3 and thus its restriction to $1, 2, \dots, n-4$ lies in A_{n-4} .

Case 1. S contains a cycle with 5 or more letters: take

$$g = (n n - 1 n - 2 n - 3 n - 4).$$

Case 2. S contains no cycle with 5 or more letters, but S contains at least one cycle with 4 letters: take

$$g = (n \ n - 1 \ n - 2 \ n - 3)(n - 4 \ n - 5).$$

Case 3. S contains no cycle with more than 3 letters, but S does contain two 3-cycles: take

$$g = (n \ n - 1 \ n - 2)(n - 3 \ n - 4 \ n - 5).$$

Case 4. S is of type $3^{1}2^{2k-2}1^{2}$: take

$$g = (n \ n - 1 \ n - 2).$$

Now, if S contains no cycle longer than a transposition, either S is of type $2^{2k} 1^1$, whence CC contains S by the lemma, or we have

Case 5. S fixes 5 or more letters: take g = 1.

The argument in Case 5 is quite simple. Since S fixes 5 or more letters, S has a conjugate S_1 that fixes n, n-1, n-2, n-3. Hence by the induction hypothesis $S_1 = d_1d_2$, where d_1 and d_2 both fix n, n-1, n-2, n-3, and can be expressed

$$d_1 = (a_1 a_2 \cdots a_{n-5} n - 4), \qquad d_2 = (b_1 b_2 \cdots b_{n-5} n - 4),$$

where the permutation $a_i \rightarrow b_i$ is an even permutation of the letters $1, 2, \dots, n-5$. Then $S_1 = d_3 d_4$, with

$$d_3 = (a_1 a_2 \cdots a_{n-5} n n - 1 n - 2 n - 3 n - 4),$$

$$d_4 = (b_1 b_2 \cdots b_{n-5} n - 4 n - 3 n - 2 n - 1 n),$$

and d_3 , d_4 belong to the same class, be it C or C'. If the other part of the induction hypothesis is used in a similar fashion, the assertion that CC contains S follows.

The details for Case 1 are as follows. Since $T = S_1 g^{-1}$ moves at most the first n-4 letters, we have by the induction hypothesis $T = d_1 d_2 = d'_1 d'_2$ where d_1, d_2 $[d'_1, d'_2]$ are from the same class in A_{n-4} . Writing

$$d_1 = (a_1 a_2 \cdots a_{n-5} n - 4), \qquad d_2 = (b_1 b_2 \cdots b_{n-5} n - 4),$$

the permutation $a_i \rightarrow b_i$ is an even permutation of $1, 2, \dots, n-5$. Now $S_1 = Tg = d_3d_4$, with $g = (n \ n-1 \ n-2 \ n-3 \ n-4)$ and

$$d_3 = (a_1 \cdots a_{n-5} \ n-2 \ n \ n-3 \ n-1 \ n-4),$$

$$d_4 = (b_1 \cdots b_{n-5} \ n \ n-3 \ n-1 \ n-4 \ n-2).$$

Note that d_3 and d_4 are in the same class, be it C or C', in A_n . By again using d'_1 and d'_2 in place of d_1 and d_2 , the proof is completed in this case.

In Case 2, S has a conjugate S_1 such that $T = S_1g^{-1}$ fixes at least 5 letters. Hence without loss of generality the factors d_1, d_2 $[d'_1, d'_2]$ can be chosen so that $T = d_1d_2 = d'_1d'_2$ with

$$d_1 = (a_1 \cdots a_{n-6} \ n-5 \ n-4), \qquad d'_1 = (a'_1 \cdots a'_{n-6} \ n-5 \ n-4)$$
$$d_2 = (b_1 \cdots b_{n-6} \ n-4 \ n-5), \qquad d'_2 = (b'_1 \cdots b'_{n-6} \ n-4 \ n-5)$$

and where $a_i \rightarrow b_i [a'_i \rightarrow b'_i]$ is an *odd* permutation of the letters $1, 2, \dots, n-6$. Now $S_1 = Tg = d_3d_4$, where

$$d_3 = (a_1 \cdots a_{n-6} n - 1 n - 5 n - 3 n - 2 n n - 4),$$

$$d_4 = (b_1 \cdots b_{n-6} n - 5 n - 2 n n - 3 n - 4 n - 1).$$

The permutations d_3 and d_4 belong to the same class in A_n . Priming the a_i and b_i completes the proof in this case.

In Case 3, S has at least two 3-cycles, and has a conjugate S_1 such that $T = S_1g^{-1}$ fixes the letters n, n-1, n-2, n-3, n-4, n-5. By the induction hypothesis permutations d_1 and d_2 exist such that $T = d_1d_2$ with

$$d_1 = (n - 4 \ a_1 \cdots a_k \ n - 5 \ a_{k+1} \cdots a_{n-6}),$$

$$d_2 = (n - 4 \ b_1 \cdots b_l \ n - 5 \ b_{l+1} \cdots b_{n-6}),$$

and where d_1 and d_2 are in the same class in A_n . (We cannot assume that n-4 and n-5, which are fixed by T, are neighbors in d_1 and d_2 , but it is possible that k = 0 and l = n - 6 or that k = n - 6 and l = 0.) Now $S_1 = Tg = d_3d_4$, where

$$d_3 = d_1 h, \quad d_4 = h^{-1} d_2 g,$$

with h = (n-5, n-3, n-2)(n-4, n-1, n). Then d_3 and d_4 are both *n*-cycles. It has only to be checked that they are in the same class in A_n ; to do this is tedious, but straightforward. To complete the proof in this case we observe that since S contains two 3-cycles and $S_1 = d_3d_4$, the decomposition $S_1 = d'_3d'_4$ can be obtained by applying a certain outer automorphism of A_n .

In the only remaining case, S fixes 2 letters, and therefore has a conjugate S_1 such that $T = S_1g^{-1}$ fixes

$$n, n-1, n-2, n-3, n-4.$$

Again we have $T = d_1 d_2$, where we can write

$$d_1 = (a_1 \cdots a_{n-6} \ n-4 \ n-5), \qquad d_2 = (b_1 \cdots b_{n-6} \ n-5 \ n-4),$$

and where the permutation $a_i \rightarrow b_i$ is an odd permutation of the letters $1, 2, \dots, n-6$. Then $S_1 = Tg = d_3d_4$, with

$$d_3 = (a_1 \cdots a_{n-6} n - 1 n n - 3 n - 2 n - 4 n - 5),$$

$$d_4 = (b_1 \cdots b_{n-6} n - 5 n - 4 n n - 2 n - 3 n - 1),$$

and these belong to the same class. By priming we again conclude CC contains S, and the proof is complete in all cases. Hence Theorem 1.

5. Covering A_{16k} . By means of an almost identical argument we have shown that the class C of type $4l_1 \ 4l_2 \ 4l_3 \ 4l_4 \ (l_i \ge 1)$ in $A_n \ (n = 4\Sigma l_i)$ has the covering property (1). The lemma required is simpler: Let m = 4l, $b = (12 \cdots m)$. Taking x =

 $(m m - 3 m - 2 m - 1, m - 4 m - 7 m - 6 m - 5, \dots, 8567, 4123)$ gives

$$bx = (1 \ 3)(2 \ m)(4 \ 6)(5 \ 7) \cdots (m - 4 \ m - 2)(m - 3 \ m - 1).$$

Hence if D is the class of type $4l_1 4l_2 \cdots 4l_r$ (r even) in A_n , then DD contains the type $2^{n/2}$.

In order to start the induction we had to prove that the class C of type 4⁴ has the property $CC = A_{16}$. The calculations are too lengthy to be included. (A copy can be had from any of the authors.) This yields Theorem 2.

One can ask how small a period is possible for a class C with property (1). The first result in this direction was that of Xu [4] who found such a class with period n - 3 if n is odd and period n - 2 if n is even. From the result of Bertram quoted in the introduction, it follows that the smallest period of such C is $\leq 3n/4$. While Theorem 2 does not give covering for all n, it nevertheless yields, among classes C in A_n satisfying (1),

$$\liminf_{n \to \infty} \frac{\text{period of } C}{n} \leq \frac{1}{4}$$

as opposed to Bertram's 3/4.

From the other direction we have shown [3] that for n > 6 there is no class C in A_n having property (1) and period 2, and if n = 12k + 10there is no such class of period 3. There may be such a class of period 4, however. More precisely, we conjecture that for n = 8k, the class $C = 4^{2k}$ has the covering property (1).

REFERENCES

1. E. A. Bertram, Even permutations as a product of two conjugate cycles, J. Combinatorial Theory (A) 12 (1972), 368-380.

2. J. L. Brenner, Covering theorems for nonabelian simple groups. II, J. Combinatorial Theory (A), 14 (1973), 264–269.

3. J. L. Brenner, M. Randall, J. Riddell, *Covering theorems for finite nonabelian simple groups. I*, Colloq. Math. **XXXII**.1, 1974 (to appear).

4. Cheng-Hao Xu, The commutators of the alternating group, Sci. Sinica 14 (1965), 339-342.

Received August 20, 1973 and in revised form May 21, 1974. The first author was supported by NSF grant GP-32527. The third author was supported in part by NRC A-5208.

10 Phillips Road, Palo Alto, Ca Arizona State University, Tempe and University of Victoria

CONTENTS

Zvi Artstein and John A. Burns, Integration of compact set-valued
functions
J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are
Mark Depart Characters and Schur indices of the unitary reflection
Mark Denaid, Characters and Schur marces of the unitary rejiection
group [321] ²
H. L. Bentley and B. J. Taylor, Wallman rings 15
E. Berman, Matrix rings over polynomial identity rings II
Simeon M. Berman, A new characterization of characteristic
functions of absolutely continuous distributions
Monte B. Boisen, Jr. and Philip B. Sheldon, Pre-Prüfer rings
A. K. Boyle and K. R. Goodearl, Rings over which certain modules
are injective
J. L. Brenner, R. M. Crabwell and J. Riddell, <i>Covering theorems for</i>
finite nonabelian simple groups. V
H. H. Brungs. Three questions on duo rings 345
Iracema M Bund, Birnhaum-Orlicz spaces of functions on groups 351
John D. Flwin and Donald R. Short Branched immersions between
2-manifolds of higher topological type 361
I K Finch The single valued extension property on a Banach
space 61
I R Fisher A Goldie theorem for differentiably prime rings 71
Fric M Friedlander Extension functions for rank 2 torsion free
abelian arouns 271
I Froemke and R Quackenbusch. The spectrum of an equational
s. Moente and K. Quackenbusen, The spectrum of an equational
D I Conduct Dadicale of cumplementary consideration of
B. J. Gardner, Rudicals of supplementary semilattice sums of
associative rings
Snmuel Glasner, Relatively invariant measures
G. R. Gordn, Jr. and Sibe Mardesic, Characterizing local connectea-
ness in inverse limits
S. Graf, On the existence of strong liftings in second countable
topological spaces
S. Gudder and D. Strawther, Orthogonally additive and orthogonally
increasing functions on vector spaces427
F. Hansen, On one-sided prime ideals 79
D. J. Hartfiel and C. J. Maxson, A characterization of the maximal
monoids and maximal groups in βx437
Robert E. Hartwig and S. Brent Morris, The universal flip matrix and
the generalized faro-shuffle445

Pacific Journal of Mathematics Vol. 58, No. 1 March, 1975

John Allen Beachy and William David Blair, <i>Rings whose faithful left ideals</i>	1
Une cojulitijui	15
Elizabeth Darman Matrix since and barbara June Taylor, <i>Wallman rings</i>	15
Enzabeth Berman, <i>Matrix rings over polynomial identity rings</i> . II	51
Ann K. Boyle and Kenneth R. Goodearl, <i>Rings over which certain modules</i>	12
L L Devene Patent Mad Commelling Lines Diddell Comme	43
for finite nonabelian simple groups. V	55
James Kenneth Finch, <i>The single valued extension property on a Banach</i>	
space	61
John Robert Fisher, A Goldie theorem for differentiably prime rings	71
Friedhelm Hansen, <i>On one-sided prime ideals</i>	79
Jon Craig Helton, Product integrals and the solution of integral	
equations	87
Barry E. Johnson and James Patrick Williams, <i>The range of a normal</i>	
derivation	105
Kurt Kreith, A dynamical criterion for conjugate points	123
Robert Allen McCoy, <i>Baire spaces and hyperspaces</i>	133
John McDonald, <i>Isometries of the disk algebra</i>	143
H. Minc, Doubly stochastic matrices with minimal permanents	155
H. Minc, <i>Doubly stochastic matrices with minimal permanents</i> Shahbaz Noorvash, <i>Covering the vertices of a graph by vertex-disjoint</i>	155
H. Minc, <i>Doubly stochastic matrices with minimal permanents</i> Shahbaz Noorvash, <i>Covering the vertices of a graph by vertex-disjoint</i> <i>paths</i>	155 159
H. Minc, <i>Doubly stochastic matrices with minimal permanents</i> Shahbaz Noorvash, <i>Covering the vertices of a graph by vertex-disjoint</i> <i>paths</i> Theodore Windle Palmer, <i>Jordan</i> *-homomorphisms between reduced	155 159
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras 	155 159 169
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some 	155 159 169
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups 	155 159 169 179
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups Mario Petrich, Varieties of orthodox bands of groups 	155 159 169 179 209
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups Mario Petrich, Varieties of orthodox bands of groups Robert Horace Redfield, The generalized interval topology on distributive 	155 159 169 179 209
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras . Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups . Mario Petrich, Varieties of orthodox bands of groups . Robert Horace Redfield, The generalized interval topology on distributive lattices . 	155 159 169 179 209 219
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras . Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups . Mario Petrich, Varieties of orthodox bands of groups . Robert Horace Redfield, The generalized interval topology on distributive lattices . James Wilson Stepp, Algebraic maximal semilattices . 	155 159 169 179 209 219 243
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups Mario Petrich, Varieties of orthodox bands of groups Robert Horace Redfield, The generalized interval topology on distributive lattices James Wilson Stepp, Algebraic maximal semilattices Patrick Noble Stewart, A sheaf theoretic representation of rings with 	155 159 169 179 209 219 243
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras . Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups . Mario Petrich, Varieties of orthodox bands of groups . Robert Horace Redfield, The generalized interval topology on distributive lattices . James Wilson Stepp, Algebraic maximal semilattices . Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities . 	155 159 169 179 209 219 243 249
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras . Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups . Mario Petrich, Varieties of orthodox bands of groups . Robert Horace Redfield, The generalized interval topology on distributive lattices . James Wilson Stepp, Algebraic maximal semilattices . Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities . Ting-On To and Kai Wing Yip, A generalized Jensen's inequality. 	155 159 169 179 209 219 243 249 255
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras. Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups . Mario Petrich, Varieties of orthodox bands of groups . Morio Petrich, Varieties of orthodox bands of groups . Robert Horace Redfield, The generalized interval topology on distributive lattices . James Wilson Stepp, Algebraic maximal semilattices . Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities . Ting-On To and Kai Wing Yip, A generalized Jensen's inequality. 	155 159 169 179 209 219 243 249 255
 H. Minc, Doubly stochastic matrices with minimal permanents Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups Mario Petrich, Varieties of orthodox bands of groups Mobert Horace Redfield, The generalized interval topology on distributive lattices James Wilson Stepp, Algebraic maximal semilattices Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities Ting-On To and Kai Wing Yip, A generalized Jensen's inequality Arnold Lewis Villone, Second order differential operators with self-adjoint extensions 	155 159 169 179 209 219 243 249 255 261
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras. Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups. Mario Petrich, Varieties of orthodox bands of groups. Robert Horace Redfield, The generalized interval topology on distributive lattices. James Wilson Stepp, Algebraic maximal semilattices. Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities. Ting-On To and Kai Wing Yip, A generalized Jensen's inequality. Arnold Lewis Villone, Second order differential operators with self-adjoint extensions. Martin E. Walter, On the structure of the Fourier-Stielties algebra 	155 159 169 179 209 219 243 249 255 261 267
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras. Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups. Mario Petrich, Varieties of orthodox bands of groups. Robert Horace Redfield, The generalized interval topology on distributive lattices . James Wilson Stepp, Algebraic maximal semilattices . Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities . Ting-On To and Kai Wing Yip, A generalized Jensen's inequality . Arnold Lewis Villone, Second order differential operators with self-adjoint extensions . Martin E. Walter, On the structure of the Fourier-Stieltjes algebra . 	155 159 169 179 209 219 243 249 255 261 267 283
 H. Minc, Doubly stochastic matrices with minimal permanents. Shahbaz Noorvash, Covering the vertices of a graph by vertex-disjoint paths. Theodore Windle Palmer, Jordan *-homomorphisms between reduced Banach *-algebras Donald Steven Passman, On the semisimplicity of group rings of some locally finite groups Mario Petrich, Varieties of orthodox bands of groups Robert Horace Redfield, The generalized interval topology on distributive lattices James Wilson Stepp, Algebraic maximal semilattices Patrick Noble Stewart, A sheaf theoretic representation of rings with Boolean orthogonalities Ting-On To and Kai Wing Yip, A generalized Jensen's inequality. Arnold Lewis Villone, Second order differential operators with self-adjoint extensions Martin E. Walter, On the structure of the Fourier-Stieltjes algebra John Wermer, Subharmonicity and hulls Edythe Parker Woodruff, A map of E³ onto E³ taking no disk anto a 	 155 159 169 179 209 219 243 249 255 261 267 283