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It is shown that certain associative rings with Boolean
orthogonalities are isomorphic to rings of global sections.

Let A be a ring and 1 a relation on A. For each subset 5 of A
define

Sλ = {xGA\x±s for all s E 5} and S±1 = (S1)1.

When S = {s} we write s1 and s11 instead of {s}1 and {s}11. Subsets of
A of the form S1 are polars. The relation 1 is a Boolean orthogonality
if all polars are two-sided ideals and if, for all JC, y G A,

1. x±y-»y±jc, 2. x±x-*x = 0, and
3. x^Πy^

The set of polars is a Boolean algebra (see [3]) with meet and join
defined by

BΛC = BΠC and B v C = (B1
 Λ C1)1.

Boolean orthogonalities have been studied by Davis [3], Cornish [1]
and by Cornish and Stewart [2].

Throughout this paper we shall assume that A is an associative ring
with an identity and with a Boolean orthogonality 1. We shall also
assume that the following finiteness condition is satisfied:

for any two elements x, y G A there is a finite set F QA
such that x11 A yλl = F11.

Notice that if F = {/„ -,/„}, then F ± = / | Λ Λ/i and Fλl =

An ideal / of A is a 1-ideal if F 1 1 C / for every finite set F C I , and
/ is I'prime if Ij£ A and whenever the intersection of two polars B and
C is contained in I, either B Cl or C Ql.

LEMMA. Assume that P is either a 1-prime ideal orP = A, that I is
a 1'ideal and that x EA\I is such that x L± A J X 1 C I implies that a EL P.
Then there is a L-prin e 1-ideal Q such that ICQ CP and x&Q.
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Proof. Using Zorn's Lemma select a 1-ideal Q D I maximal with
respect to the property "xg: Q and x±λ Λ 2 ±λ C Q implies that α E P" .
Clearly I CQ CP.

Suppose that B and C are polars neither of which is contained in Q.
Choose b <= B\Q and c e C\Q. Then

J3' = U {F 1 X |F is a finite subset of {b} U <?}

and
C" = U {Gx± IG is a finite subset of {c} U Q}

are 1-ideals which properly contain Q. By the maximality of Q either
J C ^ C B ' or x ^ Λ f t f C B ' for some ft,GΛ\P, and x u C C ' or
JC^ Λ cf1 C C for some CiGA\P. Thus we obtain finite sets
{b,fu ;fn}C{b}UQ and {c,gu-- ,gm}C{c}UQ such that one of
JC 1 1, JC^1 Λ fcf\ JCX± Λ cf1 or JC 1 1 Λ b\L

 Λ c j 1 is contained in

= (fc±1v/t±V • v/ ί i )Λ(C i i Vg{ i V ••Vgi,1)

= ( 6 i i Λ C l i ) v i ί i i

where H is a finite subset of Q (we have used the distributivity of the
Boolean algebra of polars and also the finiteness condition). If
b1L Λ c 1 1 C ζ), then JC11 c <? or JC11 Λ i l x C Q for some d G A \P both of
which contradict the choice of Q. Thus B Π C£Q and we conclude
that ζ) is 1-prime.

For the remainder of this paper X will be fixed set of 1-prime ideals
which contains all 1-ρrime 1-ideals and which is full (that is, if / is a
sum of polars and 1^ A, then I CP for some P E X).

PROPOSITION 2. (Cornish [1]). For each PEX,

{x<ΞA\x1£P}= Π{RGX\RCP}= Π{QEX\QCP

and Q is a 1-prime 1-ideal}.

Proof. Suppose that JC1 £ P and R is a 1-prime ideal contained in
P. Then JC11 Λ JC1 = (0) C £ and so x E Λ.

If x1 C P, then by Lemma 1 (take / = x1) there is a 1-prime 1-ideal
Q C P such that x£ Q. This establishes the result.
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The set described in the proposition will be denoted by OP. We note
that Op = P if_ and only if P is minimal in X.

Let P E X . The set OP, being an intersection of 1-ideals, is itself a
1-ideal. Define a relation (also denoted by 1) on AIOP by

(x + Op) 1 (y + Op) ^ x x ±
 Λ y ±λ C OP.

This relation is well-defined because if x, = x + a and y, = y + b where
α,fcE Op, then

xf1
 Λ yf± = (x + α)J"L

 Λ (y + f > ^ C (x X 1 v x LL) Λ ( y l x v 6 1 1)

and so x t 1 Λ y f1 C (x1JL Λ y 1J0 v F 1 1 where F is a finite subset of OP. It
is routine to check that

x1 + Op C (x + OP)X and x 1 1 + OP C (x + OP)± X

for each x E A, and that the relation 1 is a Boolean orthogonality on
AI Op.

PROPOSITION 3. For each P E X , P = P/OP w α 1-prime ideal of
AI Op which contains all proper polars of A/OP.

Proof Let_J5 jmd C be polars in A/OP such that B Π C C P .
Suppose that B£P. Then there is an element b E A such that
b 4- Op E B\P. Let c + OpEC. Then

(b11 + OP) Π (c1J- + OP) C (b + Op)11 Π(c + Op)11 CB nCCP

and s o b i i Π c i i C P . Since b ^ P w e conclude that c EP and soCCP.
Thus P is 1-prime.

Suppose that a11 Λ b 1 1 C OP. Then there is a finite set {/,, ,/n}C
Op such that

For each / = 1, , n, /• e OP and so f] £ P. Thus f\ Λ • Λ /i g P.
Also, ft11 Λ /t Λ - A / i C α 1 because α 1 1 Λ > ̂  Λ /f Λ Λ /ί = (0). If
α ^ Op, then α 1 C P and so, since f\ Λ Λ /ί ^ P, b 1 1 C P. Thus P
contains (α + Oi^)1 for all <? ^ OP. It follows that P contains all proper
polars of AIOP.



252 PATRICK N. STEWART

Let S be the disjoint union of the factor rings AIOP. The relation
(also denoted by 1) on the product

n{AIOP\P<ΞX}

= {f:X->S\f(P)GAIOP for all PGX}
defined by

f±g*+f(P)±g(P) in AI Op for all PEX

is a Boolean orthogonality. Each a EL A determines a function a G
U{AIOP\PEX} defined by ά(P) = a + OP. It follows from Lemma 1
that Π {PIP is a 1-prime 1-ideal} = (0) and so Π {OP | P G X} = (0).
Thus we obtain the usual embedding

A^A CU{AIOP\PGX}.

This embedding respects orthogonalities; that is, a 1 b in A if and only
if a 1 b in the product.

We define a topology on X by declaring the basic open sets to be
the subsets of the form

Notice that X(a)Π X(b)D X(c) for all c G aLL A bLL and so these sets
do qualify as a topological base.

Suppose that {X(a)\a G C} is a cover of X consisting of basic open
sets. Then X{aλl\a GC} = A because X is full. Since A has an
identity there is a finit^set F C C such that X{alλ\a GF} = A Thus
{X(a)\a GF} covers X and so X is quasi-compact.

Give 5 the topology generated by sets of the form a [ U] =
{a + Op IP G_l/} where U is open in X and a EA. We obtain a sheaf of
rings (5, TΓ, X) where π : S —»X is the projection onto X.

Let Γ = {/1 / G U{A IOp\PG X} is continuous} be the ring of global
sections. The following observation shows that A C Γ: for all x, y G A,
{P G X\x - y G Op} is open in X. To see this notice that if x - y G OQ,
then Q G X(u) C { P G X | j c - y G OP} where M is any element in (x -

THEOREM 4. A = Γ.

Proof. Let / G Γ. Since X is quasi-compact there are finite sets
{α,, •••,#„} and {t;,, ,ϋn} such that X = X(α,) U UX(απ) and
f(P) = i;, + OP for all P G X(α,).

Notice that vx{- v}B Π{OP\PE X(α,) Π X(α,)}, so (u, - v} )
1 C
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Q G X implies that a I 1 Λ 2 ) λ C Q. It follows from Lemma 1 (take
P = A and / = (u,- - i?,-)1 for each JC£ (ty - i?,-)1) thai

and s o α f Λ i ^ C (t?,- - t?,.)1. Thus (u, - vβ11 A z^Ca).
Since X = X(a,)U •• U X ( α J and X is full, a t 1 * + flί1

Choose M, E α i 1 such that 1 = w, + + wn and let v = uivί + +
Then

υ - Vj = ι ι , ( i ; , - t>/)+ + Mn(ι;n - ^ G α C O p

for all P G XXα,-). Thus /(P) = v} + OP = v + OP for all P G X ί ^ ) and so

f-rings (Keimal [4]). Let A be an /-ring with identity. The
relation defined byjc±y<H»|jc| Λ | y | = 0 i s a Boolean orthogonality and
x11 Λ y^ = (\x I Λ y I) 1 1 . Let X be the set of irreducible /-ideals.
Then X is full because polars are /-ideals and sums of /-ideals are
again /-ideals. Also, all 1-ρrime 1-ideals are irreducible /-ideals and^so
A is isomorphic to the /- ring of all global sections of the sheaf (S, π, X).

Reduced rings (Koh [5]). Let A be a ring with identity and no
nonzero nilpotent elements. The relation defined by JC 1 y *+xy = 0 is a
Boolean orthogonality and x1^ Λ y11 = (xy)11. Let X be the set of all
prime ideals of A. Clearly X is full. Also, all l-prime 1-ideals are
completely prime and so A is isomorphic to the ring of global sections
of the sheaf (5, τr,X). Each stalk A/OP is reduced (Proposition 2) and
the prime ideal P/OP contains all zero divisors (Proposition 3).

Semiprime rings. Let A be a semiprime ring with identity. The
relation defined by x 1 y <->(x)(y) = (0) is a Boolean orthogonality.
However, the finiteness condition may not be satisfied as the following
example shows.

Let R be a semiprime ring with identity, R' the ring of 3 x 3
matrices with entries from R,

0
0
0

1
0
0

0
0
0

and y =

0
0
0

0
0
0

1
0
0

Define x and y in P = Π{JRΠ | Rn = R' for n = 1,2, •} by

jc(n) =
0
y
0

if
if
if
if

n = 1
nΦ 1
n = 1
nψ± 1

(mod
(mod
(mod
(mod

2)
2)
3)
3).
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Notice that xy = yx = x2 = y2 = 0. Let E be the subring of P which is
generated by the identity of P, x, y and

${Rn I Rn = R' for n = 1,2, •}. Then

JC11 = { / G £ | / ( M ) = 0 for n^\ (mod 2)},

y±1 = {/EE|/(n) = 0 for n^ί (mod 3)},

and so

jp11 Λ y 1 1 = {/GE|/(n) = 0 for n ^ l (mod 6)}.

If JC11 Λ y±1 = {/i, •• s/π}11, then at least one of the / must satisfy
/i(n)^0 for infinitely many positive integers n. But then there are
integers α, β and γ such that /(n) = (α + βx + γy) (n) for all but a finite
number of positive integers n. This is incompatible with the require-
ment that fi(n) = 0 for nφ 1 (mod 6).

When the finiteness condition is satisfied (for instance, when A
satisfies the maximum condition on annihilators), A is isomorphic to the
ring of all global sections of the sheaf (S, π, X) where X is the set of
prime ideals of A, Each stalk AIOP is semiprime (Proposition 1) and the
prime ideal P/OP contains all two-sided annihilator ideals of A/OP

(Proposition 2).
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