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It is shown that certain associative rings with Boolean
orthogonalities are isomorphic to rings of global sections.

Let A be a ring and L a relation on A. For each subset S of A
define

St={x€Al|xls for all s€S} and S*=(SY-

When S = {s} we write s* and s** instead of {s}* and {s}**. Subsets of
A of the form S* are polars. The relation L is a Boolean orthogonality
if all polars are two-sided ideals and if, for all x,y € A,

1. xiy—>ylx, 2. xlx—>x=0, and
3. x*Ny*=0)—>xLy.

The set of polars is a Boolean algebra (see [3]) with meet and join
defined by

BAC=BNC and BvC=(B'ACHY".

Boolean orthogonalities have been studied by Davis [3], Cornish [1]
and by Cornish and Stewart [2].

Throughout this paper we shall assume that A is an associative ring
with an identity and with a Boolean orthogonality L. We shall also
assume that the following finiteness condition is satisfied:

for any two elements x,y € A there is a finite set FC A
such that x** A y** = F*,

Notice that if F={f,---,f.}, then F*=fian --aAf; and F*“=
TV osev
Anideal I of A isa L-ideal if F** C I for every finite set F C I, and
Iis L-prime if I # A and whenever the intersection of two polars B and
C is contained in I, either BCI or CCL

LemMMA. Assume that Pis either a L-prime ideal or P = A, that L is
a L-ideal and that x € A\l is such that x** A 2 ** C I implies that a € P.
Then there is a L-prine l-ideal Q such that IC Q C P and x& Q.
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Proof. Using Zorn’s Lemma select a L-ideal Q D I maximal with
respect to the property “x& Q and x** A 2 ** C Q implies that a € P”.
Clearly ICQCP.

Suppose that B and C are polars neither of which is contained in Q.
Choose b € B\Q and ¢ € C\Q. Then

B’ = U{F**|F is afinite subset of {b} U Q}

and
C' = U{G**|G is afinite subset of {c} U Q}

are l-ideals which properly contain Q. By the maximality of Q either
x**CB' or x**Abi*CB’' for some b, A\P, and x**CC’' or
x*Aaci"CC' for some c,€A\P. Thus we obtain finite sets
{b,fi, . £,3C{b}UQ and {c,g, -, 8.} C{c}UQ such that one of
x, xtAabtt, xtacitor xtt A bttt A7t is contained in

{byf]" : -’fn}Ll A {Cvgh' ’ '7gm}iuL
=(b* v ity v ) A (et gty v ghh)

=(bJ_l A CL.L) v HJJ_

where H is a finite subset of Q (we have used the distributivity of the
Boolean algebra of polars and also the finiteness condition). If
b**Ac**CQ,thenx**CQorx** arl*CQ forsomed € A\P both of
which contradict the choice of Q. Thus BN CZ Q and we conclude
that Q is L-prime.

For the remainder of this paper X will be fixed set of L-prime ideals
which contains all L-prime L-ideals and which is full (that is, if I is a
sum of polars and I# A, then I C P for some P € X).

ProPOSITION 2. (Cornish [1]). For each P € X,
{(xeA|x*Z€P}=N{REX|RCP}=N{QEX|QCP

and Q is a L-prime L-ideal}.

Proof. Suppose that x* € P and R is a L-prime ideal contained in
P. Then x** Ax*=(0)CR and so x ER.

If x* C P, then by Lemma 1 (take I = x*) there is a 1-prime L-ideal
Q C P such that x& Q. This establishes the result.
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The set described in the proposition will be denoted by O,. We note
that O, = P if and only if P is minimal in X

Let P € X. The set O,, being an intersection of L-ideals, is itself a
L-ideal. Define a relation (also denoted by 1) on A/O, by

(x+0p) L(y+Op)e>x** Ay~ COp

This relation is well-defined because if x,=x +a and y, =y + b where
a,b € Op, then

xitAayrtt=x+a)yta(y+b)HCxttvet) Ayt vbt

andso xi7 A yTrC(x* A y*t) v F** where F is a finite subset of Op. It
is routine to check that

x*+0,C(x+0p) and x“+0C(x+Op)*

for each x € A, and that the relation L is a Boolean orthogonality on
A/[Op.

ProPOSITION 3. For each PE X, P=P/O; is a L-prime ideal of
A [Op which contains all proper polars of A/[Op.

Proof. Let B and C be polars in A/O, such that BNC CP.
Suppose that BZ P. Then there is an element b €A such that
b+0.€B\P. Let c+0O,&C. Then

(b +0p)N(c*+0,)C(b+0:)"*N(c+0:)*CBNCCP

andso b N c** CP. Since b& P we conclude that c € P andso C C P.
Thus P 13 L-prime.

Suppose that a** A b** C Op. Then there is a finite set {f,, -, f,} C
O, such that

au/\bii___:{fh.“,fn}JJ: .ILLV “Vfﬁj'.

Foreachi=1,---,n, f €0, and so fiZP. Thus fin --AfrZP

Also, b** A fin - AfiCa*becausea™* Ar» * Afta---Afr=(0). If
a# 0,, then a*CP and so, since fia -+ A fiZ P, b**CP. Thus P
contains (a + Op)* for all a & O,. It follows that P contains all proper

polars of A/O.
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Let S be the disjoint union of the factor rings A/O,. The relation
(also denoted by 1) on the product

{A/O,|P € X}

={f: X—>S|f(P)EA/O, for all PE€X}
defined by _
flLgef(P)Lg(P) in A/Oy for all PEX

is a Boolean orthogonality. Each a € A determines a function 4 €
II{A /O, | P € X} defined by d(P)=a + Op. It follows from Lemma 1
that N{P|P is a L-prime L-ideal}=(0) and so N{0,|P € X} = (0).

Thus we obtain the usual embedding

AS>ACIA/O:|P € X}

This embedding respects orthogonalities; that is, a L b in A if and only
if 4 Lb in the product.

We define a topology on X by declaring the basic open sets to be
the subsets of the form

X(a)={PE X|a**ZP}.

Notice that X(a) N X(b) D X(c) for all ¢ € a** A b** and so these sets
do qualify as a topological base.

Suppose that {X(a) |a € C}is acover of X consisting of basic open
sets. Then 3{a*‘|a € C}= A because X is full. Since A has an
identity there is a finite set F C C such that 3{a**|a € F} = A. Thus
{X(a)|a € F} covers X and so X is quasi-compact.

Give S the topology generated by sets of the form d[U]=
{a + Op|P € U} where U is open in X and a € A. We obtain a sheaf of
rings (S, m, X) where 7: S — X is the projection onto X.

LetT'={f|fET{A/O:|P € X} is continuous} be the ring of global
sections. The following observation shows that A CT: forall x,y € A,
{P € X|x ~y € Op}is open in X. To see this notice that if x —y € O,
then Q € X(u)C{P € X|x —y € Op} where u is any element in (x —
Q.

THEOREM 4. A =T.

Proof. Let fE€T. Since X is quas1 -compact there are finite sets
{a;,---,a,} and {v,,---,v,} such that X=X(a)U --- UX(a,) and
f(P)=v, + Oy for all P € X(a)).

Notice that v, —v, € N{0:|P € X(a;)) N X(a;)}, so (v—v)*C
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Q € X implies that a** A 2 i C Q. 1t follows from Lemma 1 (take
P=A and I =(v; — v;)* for each x& (v, — v;)*) that

(v — )= n{QI(Ui -y CQ EX}

and so ai* A1 7 C (v, — o). Thus (v; —v)* A1 Caj.

Since X = X(a,) U -+-UX(a,) and X is full, at*+--- +ai = A.
Choose u; Ea+* suchthat 1 = u,+---+u, and let v = u,v0,+ - - - + U,v,.
Then

v—v=uv,—v)+ - +u(v, —v,)€a;CO0p

forall P € X(a;). Thus f(P) = v; + O, = v + O for all P € X(a;) and so
f=b€EA.

f-rings (Keimal [4]). Let A be an f-ring with identity. The
relation defined by x L y «>|x| A |y| =0 is a Boolean orthogonality and
x* Ayt =(x|n yD*. Let X be the set of irreducible ¢-ideals.
Then X is full because polars are ¢-ideals and sums of ¢-ideals are
again ¢-ideals. Also, all L-prime L-ideals are irreducible ¢-ideals and so
A is isomorphic to the f-ring of all global sections of the sheaf (S, 7, X).

Reduced rings (Koh [5]). Let A be a ring with identity and no
nonzero nilpotent elements. The relation definedby x Ly <> xy =0isa
Boolean orthogonality and x** A y** = (xy)**. Let X be the set of all
prime ideals of A. Clearly X is full. Also, all 1-prime L-ideals are
completely prime and so A is isomorphic to the ring of global sections
of the sheaf (S, 7, X). Each stalk A /O, is reduced (Proposition 2) and
the prime ideal P/O;, contains all zero divisors (Proposition 3).

Semiprime rings. Let A be a semiprime ring with identity. The
relation defined by x L y & (x)(y)=(0) is a Boolean orthogonality.
However, the finiteness condition may not be satisfied as the following
example shows.

Let R be a semiprime ring with identity, R’ the ring of 3x3
matrices with entries from R,

0 1 0 0 0 1
x =|0 0 0 and y= |0 0 0
0 0 0 0 0 0

Define ¥ and y in P=1I{R,|R, =R’ for n =1,2,--} by

_ _x if n=1 (mod 2)
x(")‘{o if n#1 (mod 2)
[y if n=1 (mod 3)
y(")‘{o if  n#l  (mod 3).
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Notice that X§ = yx = x>=y2=0. Let E be the subring of P which is
generated by the identity of P, X, ¥ and

3{R,|R, =R’ for n=1,2,---}. Then
¥t ={fEE|f(n)=0 for n#l (mod 2)},
y={f€E|f(n)=0 for n#1 (mod 3)},

and so

LA ={f€E|f(n)=0 for n#1 (mod 6)}.

=

If x““Ay*={f,,- -, f.}*", then at least one of the f; must satisfy
fi(n) #0 for infinitely many positive integers n. But then there are
integers a, B and vy such that f(n) = (a« + BX + yy) (n) for all but a finite
number of positive integers n. This is incompatible with the require-
ment that fi(n) =0 for n# 1 (mod 6).

When the finiteness condition is satisfied (for instance, when A
satisfies the maximum condition on annihilators), A is isomorphic to the
ring of all global sections of the sheaf (S, 7, X) where X is the set of
prime ideals of A. Each stalk A /O; is semiprime (Proposition 1) and the
prime ideal P/O, contains all two-sided annihilator ideals of A/O;
(Proposition 2). '
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