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A generalized Jensen’s inequality for conditional expectat-
ions of Bochner-integrable functions which extends the results of
Dubins and Scalora is proved using a different method.

1. Introduction. Let (Q,F,P) be a probability space,
(U,]|-||) a complex (or real) Banach space and (V,]||-|, =.) an ordered
Banach space over the complex (or real) field such that the positive cone
{veV:v=,0}is closed. Let x be a Bochner-integrable function on
(Q,F,P) to U. Let G be a sub-o-field of the o-field F and let f be a
function on 2 X U to V such that for each u € U the function f(-,u) is
strongly measurable with respect to G and such that for each w € () the
function f(w,-) is continuous and convex in the sense that tf(w,u,) +
(1-1) f(w,u) = ,f(w,tu,+(1—t)u,) whenever u,, u,€U and 0=t =
1. For any Bochner-integrable function z on (Q,F, P) to any Banach
space W, we define E[z|G] “a conditional expectation of z relative to
G” as a Bochner-integrable function on (Q,F, P) to W such that E(z |G]
is strongly measurable with respect to G and that

J’AE[sz](w)dP=f z(w)dP, AE€EG,

where the integrals are Bochner-integrals.
The purpose of this note is to prove the following generalized
Jensen’s inequality:

TueoreM. If f(-,x(-)) is Bochner-integrable, then
@ E[f(-,x(+))|Glw) = .f(w,E[x|Gl(w)) ae.

The above theorem extends the results of Dubins [2] (cf. Mayer [5,
p. 791) and Scalora [6, p. 360, Theorem 2.3]. It is proved in [2] that the
theorem is true for the case in which the spaces U and V are both the
real numbers R, while in [6] Scalora uses the methods of Hille-Phillips
[4] to prove the theorem when the function f(w,u) is replaced by a
continuous, subadditive positive-homogeneous function g(u) on U to
V. It should be noted that the method of the proof used here is
different than those used previously, the previous methods appear to be
ineffective for a proof of the extension.
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2. Preliminaries. We refer to [4] and [6] for the definitions
and basic properties of the concepts of Bochner-integrals and the
conditional expectation of a Bochner-integrable function. Our proof
of the theorem is based on the following lemmas. Unless otherwise
specified, functions in Lemma 1-35 are defined on (Q,F, P) to U.

LemMma 1. ([4, p. 73, Corollary 1]). A function is strongly
measurable if and only if it is the uniform limit almost everywhere of a
sequence of countably-valued functions.

LemMa 2. (Egoroff’s theorem, [4, p. 72] or [3, p. 149]). A se-

quence {z;}7-, of strongly measurable functions is almost uniformly
convergent to a function z if and only if

[zi(w) — z(w)]| =0 a.e. asi—>o.

The following lemma is an immediate consequence of Lemma 1 and
Lemma 2.

LemMmA 3. If z is a strongly measurable function, then for any
positive number M there exists a sequence {z;};-, of simple functions
such that || z(o)|| = ||z(0)|+ Ma.e.,i=1,2,---, and || z(0) = z(w)|| =0
a.e. asi— o,

LemMma 4. ([6, p. 356, Theorem 2.2]).

(@ Ifz(w)=uon Q then E[z|Gl(w)=1u a.e.

() Ifzund z,i=1,2, -, are Bochner-integrable functions such
that z(w)=3"tz,(w) a.e. where t; are scalars then E[z|Gl(w)=
S tE[z |Gl(w) ae.

©) |Elz|Glw)| = E[||z|||G)w) a.e., for any Boxhner-integrable
function z.

(d) If z is a Bochner-integrable function and z,i=1,2,---, are
strongly measurable functions such that |z(w)-—z(0)]|—0 ae. as
i —> o, and if there is a real-valued integrable function y(w) = 0 such that
|z(w)|| = y(w) a.e., i =1,2,---,then z’s are Bochner-integrable and
|E[z|Gl(w)— E[z|G](w)]|—0 a.e. as i >x.

LeEmMA S. If z is a Bochner-integrable function and z,i =
1,2, -, are strongly measurable functions such that ||z, (w) - z(®)]|—0
uniformly a.e. as i—> o, then there exists an integer N such that
z,i =N,N +1,---, are Bochner-integrable functions, and

|Elz|G1(w)— E[z |G}(w)]|— 0 uniformly

a.e. as i —x,
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Proof. An immediate consequence of Lemma 4 and the fact that
E[-|G1is a positive operator on the space of all real-valued integrable
functions.

LemMA 6. If z is a strongly measure function on (0,G,P) to a
Banach space W, and if on (Q,F,P), y is a numerically-valued
integrable function such that zy is a Bochner-integrable function with
values in W, then

E[zy|G]l(w)=zE[y|Gl(w) a...

Proof. By using Lemma 3 and Lemma 4, the proof when W is the
real numbers R as given by Billingsley [1, p. 110, Theorem 10.1] can be
applied to obtain the general result.

LemMMA 7. Let g be a convex function on U to V. Ifu; €U and
LER, =0,i=1,2,--- n, such that

i =1, theni tg(u;) §Ug<i t,-ui>.
i=1 i=1 i=1

Proof. By induction.

3. Proof of the theorem. We first note thatif F € F with
P(F)>0 and z is a simple function on (Q,F,P) to U such that
xef(+,z(-)) is Bochner-integrable, then

(1) E[xFl( 2()|G1(@) = Elxr |G 1 (0)f (e, %[[;j,g]](i‘)"))) ae. onF.

To see this, let z = =, u;x4, where u; € U and A, ’s are disjoint sets of F
such that 2%,y =1. It is clear that F C{w: E[xr|G](w)>0}
a.e.. Since f(-,u) is strongly measurable with respect to G and f(w, )
is convex, by using Lemma 4, (b), Lemma 6 and Lemma 7, we then have

1
mﬂxﬁ(-,a-»mkm

-3
‘E[XFIG](w);f(“””‘)E[XFXAalG](w) a.e. on F.



258 TING ON TO AND YIP KAI WING

= 1 N
=vf(w,E—[X—F—m; u,-E[XFXA,.|G](w)>a.e. on F

=f(w Elxz|Gl(w) G](w)) a.e. on F.

" Elxr |Gl (w)

Nextly, since x is assumed to be a Bochner-integrable function on
(Q,F,P) to U, x is strongly measurable, and hence by the definition of
strong measurability (or by Lemma 3) there exists a sequence {x;}-, of
simple functions on (Q,F,p) to U such that |x(o)-x(w)|—0
a.e.. Furthermore, since f(w,-) is continuous on U it follows that
[f(w, xi(®)) = f(w, x(@))]| >0 ae..

Therefore, by Lemma 2 we can find an increasing sequence,
0,CQ,C---, of sets of F with P(Q—Q,)<1/k, k =1,2,---, such that

2 |xa @)X (@)= xa (@)x(w)]|—0 uniformly a.e. and

3)  |xa (@)f(@,X:(@)) = xa, (0)f(w,x(@))|| =0 uniformly a.e., as
i— o, for each k =1,2,---.

According to Lemma 35, (2) implies

2") |Elxax:|Gl®)— E[xaX |Gl(w)||— 0 uniformly a.e. as i — o,
for each k =1,2,---, and (3) implies

(3) ||ElxafC»x(-)|Gl(@) = Elxaf(-,x(-))|Gl@)|—0  uni-
formly a.e. as i >, for each k =1,2,---.

Now by using the continuity of f(w,-) again, it follows from (2')
that

@ | (o Elkox[Go)) _r(,, Ebrox IG](w))"_w

> "ElxXa. |Gl(@) “ "Elxa. |Gl(w)

a.e.on ), as i >,
On the other hand, from (1) we obtain

) . . - E[XQkXIG](w)
(1) E(xaf(, xi( ))IG](w)=uE[Xm|G](w)f<“” Elxo. G](w))

a.e. on (), for each k =1,2,---, and each i =1,2,3---.
Letting i — o in (1') and using (3’) and (4), we obtain

,, . . Elox |G)(@)
(1) ElxafC.x()[G)) 2 Elxo. |Glw)f (v, FaX N

a.e. on {},, since the positive cone of (V; =,) is closed.
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Finally, since | xo,(w)| =1 and xg,(w)— 1 a.e., by using Lemma 4,
(a) and (d), and the continuity of f(w,-), when k — > we have

) E[f(-,x(-)|Gl(0) 2 .f(o, E[x|Gl(w)) ae..

4. Remark. In particular, when G is the trivial sub-o-field
Z ={Q, ¢}, inequality (J) reduces to

o fﬂf(w,x(w))dPg,, (a), fnx(w)dp).

When the function f(w,u) is replaced by a continuous and convex
function g on U to V, inequalilties (J) and (J') become

(K) Elg(x(-))|Gl(w)Z .g(E[x[G](w)) ae.and

) Jng(x(w))dPzvg<fnx(w)dP).

As we have mentioned in the introduction, this result extends a theorem
of Scalora [6] in which the stronger condition that g is subadditive and
positive-homogeneous is assumed.
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