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For X a compact set in C2, h{X) denotes the polynomially
convex hull of X. We are concerned with the existence of
analytic varieties in h (X)\X. X is called "invariant" if (z, w)
in X implies (eIθz, e~ιβw) is in X, for all real θ. X is called an
"invariant disk" if there is a continuous complex-valued function
a defined on O ^ r ^ l with a(0) = a(\) = 0, such that X =
{(z, w) 11 z I ̂  1, w = <z (I z I )/z}. Let X be an invariant set and
put f(z, w) = zw. Let Ω be an open disk in C\f(X) and put
/ ~ ! ( Ω ) = {(Z,H>) in h(X)\zwEΩ}. In Theorem 2 we show

that if /~'(Ω) is not empty, then /~'(Ω) contains an analytic
variety. Let now X be an invariant disk, with certain hypoth-
eses on the function a. Then we show in Theorem 3 that /~!(Ω)
is the union of a one-parameter family of analytic varieties. A
key tool in the proofs is a general subharmonicity property of
certain functions associated to a uniform algebra. This prop-
erty is given in Theorem 1.

1. Let X be a compact Hausdorff space, let A be a uniform
algebra on X and let M be the maximal ideal space of A.

Fix / E A. For each ζ G C put f'\ζ) = {p G M \f(p) = ζ} and for
each subset Ω of C, put f~\Ω) = {p G M \ f(p) G Ω}. Consider an open
subset Ω of C\f(X). Supposing f~ι(Ω) to be nonempty, what can be
said about the structure of / '(Ω)? Work of Bishop [2] and Basener [1]
yields that if f'ι(ζ) is at most countable for each £GΩ, then /~'(Ω)
contains analytic disks. On the other hand, Cole [4] has given an
example where no analytic disk is contained in f~\Ω). In §2 we prove.

THEOREM 1. Let Ω be an open subset of C\f(X). Choose
g G A. Define Z(ζ) = supΓ' ( ί ) \g |, ζ G Ω. Then log Z is subharmonic
in Ω.

This theorem is proved by a method of Oka in [5].
In §3 we apply Theorem 1 to the following situation: X is a compact

set in C2, A is the uniform closure on X of polynomials in z and
w. Here M = h(X), the polynomially convex hull of X. We assume
that X is invariant under the map Tθ:

(z,w)-^(eiez,e~iew) for 0^0 <2π.
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284 JOHN WERMER

Put / = zw. Let Ω be an open disk contained in C\f(X) with
0 g Ω. Here /"'(Ω) = {(z, κ>) E ft (X) | zw G Ω}.

THEOREM 2. Iff~\Ω) is not empty, then f~ι(Ω) contains an analy-
tic disk.

In §4, we consider the case when X is a disk in C2, defined:

where a is a continuous complex valued function defined on 0 ^ r ^ 1,
with a(r) = o(r).

X is evidently invariant under Tθ for all θ. In Theorem 3 we give
an explicit description of h(x) for a certain class of such disks X.

2. Proof of Theorem 1. (Cf. [5], §2.) Fix ζoeΩ and let
ζn~^ζo. Assume Z(ζn)->t. We claim Z(fo) = ί For choose pn in
f~\ζn) with |g(pn) | = Z(ζn). Let p be an accumulation point of
{pn}. Then \g(p)\^t, whence Z(ζ0) ^ t, as claimed. Thus Z is upper-
semicontinuous at ζQ, and so Z is upper-semicontinuous in Ω.

Theorem 1.6.3 of [6] gives that an upper-semicontinuous function u
in Ω is subharmonic provided for each closed disk DCΩ and each
polynomial P we have

(1) u g R e P on 3D implies w ^ R e P on D.

Fix a closed disk D contained in Ω and let D be its
interior. Choose a polynomial P such that log Z g Re P on 3D. Then

^ l on <9D.

Hence for each ζ in 3D, if x is in /"*(£), then

(2) |g(jc)| |exp(-P(/))( jc) |^ l , or

|g exp(-P(/)) |g l at x.

Now g - exp( - P(/)) is in Λ. Put N = f'\D). The boundary of N is
contained in f~\3D). Hence by the Local Maximum Modulus Princi-
ple for uniform algebras, for each y in N we can find x in f~\3D) with
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whence by (2) we have

(3) \g exρ(-P(/))(y) | = 1.

Fix ζ0 in D. Choose y in f-\ζ0) with |g(y) | = Z(£o). Applying (3)
to this y, we get

(4) Z(ζ0) I exp( - P(ζo)) | ^ 1 .

Hence logZ(f0) = Re P(f0). So (1) is satisfied, and so logZ is
subharmonic in Ω, as desired.

3. Proof of Theorem 2. Since X is invariant under the maps
Tθ, h(X) is invariant under each Tθ. Fix £EΩ. There are two pos-
sibilities:

(a) \z\ is constant on f~\ζ).
(b) 3 r,, r2 with 0 < r, < r2 and 3

(z,, w,), (z2, w 2 )e/"'(£) with |z, | = r,, |z 2 | = r2.

Suppose (b) occurs. Then the circles: z = r,e'0, w = ζlrxe
iβ, 0 ^

θ ^2ττ and z = r2e
iβ, w = ζ\r2e

x\ 0 ^ θ ̂ 2 π both lie in Λ(X). Hence
the analytic annulus: r, < \z \ < r2, w = ζlz lies in f~\ζ). Thus if (b)
occurs at any point ζ in Ω, /~'(Ω) does contain an analytic disk. Hence
to prove the Theorem, we may assume that (a) holds for each ζ E
Ω. Define, for £ E Ω , Z(ζ) = supΓ ( ί ) | z |, W(ζ) = supf-\ζ)\w\. Fix
(Zo,Wo)E/"1(0. Since we have case (a), Z(ζ) = \zo\. Hence W(ζ) =
|wo | and so Z(ζ)W(ζ) = \ζl whence

Since log Z and log W are subharmonic in Ω while log | ζ | is harmonic,
log Z, log W are in fact harmonic in Ω. Put U = log Z and let V be the
harmonic conjugate of U in Ω. Put φ(£) = eu+iV(ζ). Then φ is
analytic in Ω and | φ \ = Z in Ω.

Assertion. The variety z = φ{ζ), w = ζlφ(ζ), ζ EΩ, is contained
in Λ(X).

Fix ί £ Ω . Choose (z,, w,) e / " 1 ^ ) . Then Z(ί) = |^i|, so
| φ ( ^ ) | = |z! |, i.e., 3 real α with zx = φ(ζ)eia. Then H>, =
ζlφ(ζ)eia. But ( r^z .^^OεΛW. Hence (φ(ζ), ζlφ(ζ)E h(X).
The Assertion is proved, and Theorem 2 follows.

Note. Questions related to the result just proved are studied by J.
E. Bjόrk in [3],
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4. Invar iant d isks in C 2 . Let P be a polynomial with
complex coefficients, P(t) = Σ"= I cnt

n, which is one-one on the unit
interval with endpoints identified, i.e., we assume that P(l) = P(0) = 0
and P(tι)/P(t2) if 0 ^ f , < f 2 < 1. Also assume P'(t)^0 for O S ί S
1. Then the curve β given parametrically: £ = P(ί), O ^ ί ^ l , is a
simple closed analytic curve in the £-ρlane whose only singularity is a
double-point at the origin. Denote by θ the angle between the two arcs
of β meeting at 0. Assume θ < π. Define a(r) = P(r2), i.e.,

(5) α ( r ) = Σ cv2".
π = l

Let X be the disk in C2 defined

(6) X

The function / = zw maps X on β. Denote by Ω the interior of β.

THEOREM 3. 3 function φ analytic in Ω such that h(X) is the
union of X and {(z, 0) | | z | ̂  1} and

{ ( z , w ) | z w G Ω and \z \ = \φ(zw)\}.

COROLLARY. Every point of h(X)\X lies on some analytic disk
contained in h(X).

NOTATION. Λ(Ω) denotes the class of functions F defined and
continuous in Ω and analytic in Ω.

SΛ denotes the algebra of functions on \z \ ̂  1 which are uniformly
approximable by polynomials in^z and α( |z | )/z .

LEMMA 1. Let G G C [ O , 1]. // G ( | z | ) e » , then 3 F E A ( Ω )
such that G(r) = F(a(r)) for O ^ r ^ l .

Proof Let g be a polynomial in z and α (| z | )/z. Calculation
gives that there is a polynomial g in one variable with

j - Γ g(reiθ)dθ=g(a(r)l O^r^l .
Z7Γ JO

Choose a sequence {gn} of polynomials in z and α ( | z |)/z approaching



SUBHARMONICITY AND HULLS 287

G(|z|) uniformly on | z | ^ l . Then gn(a(r))-+G(r) uniformly on
O S r S l . Hence 3 F G A (Ω) with gn -> F uniformly on β, so G(r) =

LEMMA 2. // / = zκ>, ίften f~\ίϊ) is not empty.

Proof. Fix fo ε Ω. If /"'(Ω) is empty, then / - ζ0 ή 0 on h (X) and
so (zκ> - ζoy

ι lies in the closure of the polynomials in z and w on
X Then (a(\z\)-ζoYιe%. By Lemma 1, 3 F 6 Λ ( ί l ) with
F(a(r)) = (a(r)-ζ0)

1. Then (f - ζoy
ι G A(Ω), which is false. So

f~\Ω) is not empty.

LEMMA 3. Fix ζ G 0\{O}. Let (z0, w0) be a point in h(X) with
zowQ = ζ. Then (zo,wo)EX.

Proof. Assume (zo,wo)f£X. Let r be the point in (0, 1) with
a(r) = ζ. Put, for each r, γΓ = {(reiθ, (a(r)/reiθ)) \ 0 ̂  θ < 2ττ}. Then yr

is a polynomially convex circle contained in X. Hence 3 polynomial P
with I P(Zo, HO) I > 2, IP \ < 1 on γr. Choose a neighborhood N of γΓ on
X where \P \ < 1. The image of X\N under the map (z, w)-> zw is a
closed subarc βλ of β which excludes £. Choose FGΛ(Ω) with
F(£)=l, | F | < 1 on β\{^}. Then 3 δ > 0 such that | F | < l - δ on
βx. Hence \F(zw)\<l-δ on X\N. Also |F(zw) |^ 1 on X. Fix n
and put

Q=F(zw)n P(z,w).

| | 2 . On N , | Q | S | P | < 1 . On X\N, \Q\<
(1 - δ)π maxx IP |, and so | Q \ < 1 oη X\N for large n. Then | Q \ < 1
on X. Since F is a uniform limit on β of polynomials in ζ, Q is a
uniform limit on XU{(z0, w0)} of polynomials in z and w. This
contradicts that (z0, vv0) G h(X). Thus (z0, κ>0) G X We are done.

Note. Since / maps X on β and C\/(X) is the union of the
interior and exterior of β, we conclude from the last Lemma that h(X)
is the union of X and f~\{0}) and /'(Ω).

We need some notation now. For each ζ G β \{0}, denote by r(ζ)
the unique r in (0, 1) with a(r) = £

Since a is a polynomial in r vanishing at 0, there is a constant d > 0
such that

(7) r(f)>d|f|, all ζGβ.
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For ζ0 €= Ω, denote by μζo harmonic measure at ζ0 relative to
Ω. Since β consists of analytic arcs, with one jump-discontinuity for
the tangent at ζ = 0, μζo = KζQ ds, where Kζo is a bounded functions on β
and ds is arc-length. Define

U(ζ0) = ί \ogr{ζ)dμζo(ζ).

Since (7) holds, this integral converges absolutely. U is a harmonic
function in Ω, bounded above, and continuous at each boundary point
ζ G β\{0} with boundary value log r(ζ) at ζ.

For ( G Ω , define

= sup |z | , W(ζ) = sup\w\.
Γ\ζ) Γ'(f)

LEMMA 4. For all ζEΩ, log Z(ζ) g U(ζ) and log W(ζ) ^

Proo/. Fix £Gβ\{0}, choose ζnEΩ with ^ n - ^ ^ and suppose
Z(£n)->λ. Choose pn (=Γ\ζn) with Z ( ^ ) = |z(pn)|. Without Joss of
generality, pn-*p for some point pG/ι(X). Then f(p)z=zζ By
Lemma 3, p G X, i.e., p = (reίθ, (α(r)/relθ)) for some r, 0. Also a(r) = ζ
and so r = r(ζ), whence \z(pn)\-^r(ζ) and so λ = r(ζ). Thus
Z(£')-^>r(£) as ζ'-*ζ from within Ω, and so logZ assumes the same
boundary values as (7, continuously on β\{0}.

For each positive integer k, let Cik = {ζ G Ω11 ζ \ > I Ik}. dίlk is the
union of a closed subarc βk of β\{0} and an arc ak on the circle

|ί| = l/k.
Fix £ 0 EΩ. For large k,ζ0Eίlk. Denote by μfj the harmonic

measure at ζ0 relative to Ω .̂ An elementary estimate gives that there is
a constant Cζo independent of k such that

(8) μf:(α,)^Q0 ^forall k.

Let 5 be any function subharmonic in Ω and assuming continuous
boundary values, again denoted S, on β\{0}. Assume 3 constant M
with 5 ^ M in Ω. Then for all /c,

(9) S(£o)^ί & W + f Mdμ%\ whence
Jβk J
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Applying (9) with S = log Z, we get

(10) l o g Z ( ^ ) ^ | 1 / d μ ί V + M Q , — ,

since as we saw earlier, logZ = U on /3\{0}.
By (7), if ζ' G ak,

U{ζ')= f log r(ί)dμ t (ί) > C + ί log|£|dμ { (f),

where C is a constant, so

U(ζ')>C + \og\ζ'\ = C + \ogj-. Hence

βk

Combining this with (10) and letting /c—>oc, we get that logZ(£0) =
U(ζo)9 as desired. A parallel argument gives the assertion regarding
W. We are done.

LEMMA 5. With Z defined as above, log Z(ζ) = U{ζ) for all f E Ω ,
and \ogW(ζ) = \og\ζ\-U(ζ).

Proof. Suppose either equality fails at some point ζ0. By the last
Lemma, this implies that

+ \ogW(ζ0)<log\ζ0\.

Fix p 6/-'(ίo). Then \z(p)\^Z(ζ0), \w(p)\^W(ζ0), so

l o g | z ( p ) ) v ( p ) | < l o g | f o | .

But z(p)w(p) = ζθ9 so we have a contradiction, proving the Lemma.

Proof of Theorem 3. Let V denote the harmonic conjugate of U
in Ω and put φ = eu+iV. Fix (z0, w0) G / ' ( Ω ) and put f 0 =
z0 vv0. Unless | z o | = Z(ζ0) and | wo| = W(ζ0), we have

by the last Lemma. So we must have | z o | = Z(f0) = \Φ(ζo)\.
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Conversely fix ζ0 E ίl and let (z0, vv0) be a point in C2 such that
zo wo = f0 and |zo | = |Φ(ίo)| Choose (z,, w,) ef'ι(ζ0). By the preced-
ing |z,| = |φ(£0)|, so 3 real a with zo = elαZi, wo=e'iawί. Hence
(zo,wo)E/ι(X), so (zo^oίE/XΩ). Thus /"'(Ω) consists precisely of
those points (z, n>) with zw GΩ and |z | = |φ(zw)|.

To finish the proof we need only identify /"'(O). The circle
{(z,0) I \z I = 1} lies in X, so the disk D: {(z,0) | \z | g 1} is contained in
/'(O). If (Zo, wQ) G /-'(O) and does not lie in D, then z0 = 0, H>0 ̂  0. The
same argument as was used in proving Lemma 3 shows that then
(z0, w0) £h(X), contrary to assumption. So /'(O) = D, and the proof
of Theorem 3 is finished.

REMARK. AS we have just seen, f~\Ω) is the union of varieties Vβ,
0 ^ α < 2τr, where Va is defined:

What does the boundary of such a variety Vα in h(X) look like? It splits
into two sets:

5 = {(z, w)<ΞdVa\zw(Ξβ\{0}} and

T = {(z,w)EdVa |zw=0}.

It is easy to see that S is an arc on X cutting each circle: {(z,w)E
X I \z I = r}, 0< r < 1, exactly once while Γ is a closed subset of the
diskD={(z,0) | | z |S l } .

It is remarkable that even though X is itself very regular, the rest of
the hull of X is attached to X in a very complicated way.
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