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An example is given of an u.s.c. decomposition in which no
disk in E3 maps onto a disk under the natural projection map P,
and, furthermore, the decomposition space E3/G is homeomor-
phic to E\ Each nondegenerate element is a tame arc. The
image P(H) of the set of nondegenerate elements is
O-dimensional, although Cl P(H) is E3. The basic construction
used is called a knit Cantor set of nondegenerate elements.

Bing and Borsuk [3] have given an example of a 3-dimensional
absolute retract R containing no disk. They define a particular u.s.c.
decomposition of E3 that yields R as the decomposition space. Hence,
their example is a closed map of E3 taking no disk onto a disk, but, of
course, their image is not E3.

In [8] the author defined a set X CE3 to be the P-lift of a set Y
contained in the decomposition space E3\G if and only if X and Y are
homeomorphic and the image of X under the natural projection is
Y. A disk is said to said to be P-liftable if and only if it has a
P-lift. Using this terminology, the example that is constructed in this
note has no P-liftable disk in the image space.

In [1] Armentrout asked whether there exists a pointlike decompo-
sition G of E3 such that there is a 2-sρhere S in E3\G that can not be
approximated by a P-liftable sphere. This was first answered by the
author in [9] by giving an example of a space E3\G containing such a
2-sphere. In the decomposition space of this note no 2-sphere is
P-liftable. Hence, this space is another answer to Armentrout's query.

The construction we describe in this note is based on a knit
example in the author's papers [6], [7], and [9]. It is assumed that the
reader is familiar with this example and the notations in [6]. We also
need the following definitions.

DEFINITION. Let J\ be the circle in the x—y plane with radius 1
and center at the origin, and J2 be the circle in the y—z plane with
radius 1 and center at y = - 1, z = 0. Any two tame simple closed
curves Jx and J2 in E3 are said to simply link if and only if there is a
homeomorphism of E3 onto itself taking Jx and J2 onto /Ί and Jf

2,
respectively. Two disjoint compact sets Si and S2 are said to simply
link if and only if there exist simple closed curves /, C Si and J2 C S2

such that Jx and J2 simply link.
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DEFINITION. Let {Λf,} be a defining sequence for a decomposition
G. The sequence Ml, ML ML Ml ML ML Ml, , denoted by {M{},
is called a compound defining sequence for G if and only if (1)
i = 1,2,3, (2) 1 g j g ί (3) {Mj} with the lexicographic order indi-
cated above on the indices is a defining sequence; (4) Mj"1 is a regular
neighborhood of Mi; and (5) M\ = M,. Given any decomposition of
E 3 with a defining sequence, there exists a compound defining sequence.

In [6] and [9] the author gave an example of a knit decomposition
Go of E\ a 2-complex X in E\ and an ε > 0 such that P(X) C E3/G0 is a
disk D having the property that no disk Dε which is ε-homeomorphic to
D is jP-liftable. This decomposition used "knit Cantor sets of non-
degenerate elements". In the figure two countably infinite sets of arcs
knit from the point p to the point q are indicated. Each arc pictured
represents a Cantor set of arcs. These Cantor sets of arcs and the
limiting arc gp containing p and q are the nondegenerate elements of the
decomposition Go. The 2-complex X consists of eight squares that do
not form a disk. Notice that each arc except gp pierces X in a
point. Since in JE3/G0 the arc gp has an image that is a point, the image
of X is a disk D. The decomposition is a modification of two (2,1)
toroidal decompositions. The entwining of the nondegenerate ele-
ments caused by the (2,1) toroidal decompositions is not indicated in the
figure. It would be above and below the portions shown. The result
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of the entwining is that Bd Γo is not homotopic to a point in E3 - H*. It
was shown that E3IG0 is homeomorphic to E3. In the proof only disks
that are ε -homeomorphic to D were considered. Using similar argu-
ments, it can be shown that there is no disk δ in E3 such that P(δ) is a
disk in E3/Go and Bd X is homotopic in E3 - M, to Bd δ. (In [6] M, is
the first manifold in a particular defining sequence for Go.) Hence, for
this decomposition Go, there is a regular neighborhood Γo of Bd X in E3

which is an unknotted polyhedral solid torus such that no simple closed
curve homotopic in Γo to its core bounds a disk δ that has an image in
E3IGo that is a disk.

Simply linking Γo, there is an unknotted polyhedral solid torus 5 0

that contains Mu which in turn contains all the nondegenerate elements
of Go. Let Tc and Sc be any pair of simply linked unknotted
polyhedral solid tori. There is a homeomorphism of E3 onto itself that
takes Γo and So onto Tc and S c, respectively. Given d > 0 , this
homeomorphism can be chosen so that the diameter of each nondegen-
erate element is less than d. (This follows from the proof that E3/GΌ is
homeomorphic to E3.) Hence, given simply linked unknotted
polyhedral solid tori Tc and 5 C and given d > 0, there is a decomposi-
tion Gc of E3 with nondegenerate elements Hc such that (1) i / ? C 5 c ;
(2) for each g G Hc, diam g <d; and (3) no disk δ with Bd δ homotopic
in Tc to its core has an image in E3\GC which is a disk.

We now construct a family ?Γ of solid tori Tc. Associated with
each Tc there are an Sc and Hc having the above properties. The
family is dense in E3 and so chosen that for any disk D in E3 there are a
solid torus Tc E f and a tame simple closed curve / CD Π Tc such that
J is homotopic in Tc to its core. Let G be the union of H =
{gEHc'.Hc is associated with some Γ C E J } and points in E3-
H. Then no disk projects onto a disk under the mapping
P:E3^E3IG.

The family 3~ is constructed in stages. To define the first stage, we
start with the set of points Ύx = {(p/2, q/2, r/2): p, q, and r are
integers}. Associated with Ύλ is the set ^ of all unknotted polygonal
simple closed curves having vertices in Ύx and diameters not greater
than one.

For any tame unknotted simple closed curve /, let L, =
lub{d: there is a polygonal simple closed curve K in the unbounded
component of E3-Nd(J) such that K simply links /} . (Here Nd(J)
denotes the d-neighborhood of /.) For each C ε ^ i , choose a
polygonal simple closed curve Kc that simply links C and lies in the
unbounded component of the complement of the Lc/2-neighborhood of
C. These can certainly be chosen so that the diameter of each Kc is
less than four and each Kc fails to intersect the union of the other such
simple closed curves associated with elements of ^i. For each Kc,
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choose a polyhedral solid torus Sc with core Kc and contained in the
Lc/4- neighborhood of K c This implies that C simply links Sc. The
set of these solid tori Sc can be chosen to be mutually disjoint.

The method for choosing the solid torus Tc that simply links Sc

depends on the fact that the union of two solid tori with common
boundaries and disjoint interiors is the 3-sphere obtained as the union of
E3 and the point at infinity. Since simply linked tori do not have
common boundaries, for each C enlarge Sc slightly: choose a solid
torus 5 c that satisfies the definition of Sc and contains Sc in its
interior. Let N be the Lc/4-neighborhood of C Let Ac be the
complement of a polyhedral 3-ball containing N U Sc and having
diameter less than eight. Let Bc be a polyhedral 3-ball (a tubular
neighborhood of a polygonal arc) in E3 - (Ac U N U 5C) connecting Ac

and Sc in such a way that C\(E3-(AC U Bc USC)) is a polyhedral
unknotted solid torus having C as a core. Denote this solid torus with
core C by Γc. Observe that Tc contains the Lc/4-neighborhood of C
and simply links Sc. Let 5Γ, = {Tc: C E «,}. This is the first stage of
the construction of the family 5".

For each Tc and Sc, we choose a decomposition Gc, having the
above properties with respect to Tc and Sc and having no nondegener-
ate element with diameter greater than one. It can be assumed that
each nondegenerate element is polygonal.

From the definition of a compound defining sequence it follows that
each component which is a solid torus is one of a finite nest of solid tori
which are regular neighborhoods of the innermost one of the nest. We
assume that all solid tori in a nest are tubular neighborhoods of the same
polygonal simple closed curve.

To define the nth stage, let Tn ={(p/(2n),q/(2n),r/(2")):/?,<?, and r
are integers}. The family %n is the set of all unknotted polygonal
simple closed curves having vertices in Vn and diameters again not
greater than one. Complete choices of Tc and Sc as in the first stage
with the added requirement that each Kc miss all nondegenerate
elements from previous stages.

We next determine the size requirement for nondegenerate ele-
ments at the nth stage. For any C E %, the associated solid torus 5C

intersects the compound defining sequences of only a finite number ot
the setsHc previously defined. Call them Hk,ί^k ^kc, where kc is
the appropriate integer. For each Hk, let - {(Mk){} be the compound
defining sequence. Because Sc misses each set ί/f, there are only a
finite number of (Mk){ whose boundaries intersect 5C. For each C, let
xc = m\n{d: d is the distance between two sets Bd (Mk)\ Π Sc for some
values of i, /, and k}. This xc is strictly positive. We require that each
nondegenerate element in Hc have diameter less than xc and less than
1/n. There is a decomposition Gc satisfying this and the conditions
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above with respect to Sc and the corresponding Tc. Again assume that
each image of a nondegenerate element is polygonal and that manifolds
in compound defining sequences are unions of prisms. This completes
the construction of the nth stage.

Let G be the union of H = {g EHC: C £<€„ for some positive
integer n} and points in E3-H*. This decomposition G defines the
map claimed in the title.

The proof is based on McAuley's countably shrinkable theorem [4],
as slightly revised by Reed [5], To use the theorem it is necessary to
shrink certain elements without permitting others to grow too
much. Some of the shrinking is based on Bing's shrinking of the (2,1)
toroidal decomposition [2]. Recall that, in the construction, elements
at a later stage are not permitted to intersect boundaries of more than
two manifold stages in previous compound defining sequences. This
allows growth of later stage nondegenerate elements to be controlled
during the shrinking of a particular stage. The proof is tedious, but
straightforward.

The author wishes to thank Charles H. Goldberg for his comments
concerning the construction and proof.
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