
Pacific Journal of
Mathematics

A NEW CHARACTERIZATION OF CHARACTERISTIC
FUNCTIONS OF ABSOLUTELY CONTINUOUS

DISTRIBUTIONS

SIMEON M. BERMAN

Vol. 58, No. 2 April 1975



PACIFIC JOURNAL OF MATHEMATICS

Vol. 58, No. 2, 1975

A NEW CHARACTERIZATION OF CHARACTERISTIC
FUNCTIONS OF ABSOLUTELY CONTINUOUS

DISTRIBUTIONS

SIMEON M. BERMAN

It is well known that if g belongs to L2, then

g(x)g(x +y)dx
/•

\g(x)\2dx

is the characteristic function of an absolutely continuous di-
stribution function. Conversely, every such characteristic
function has the representation given above. Here we shown
that if R(s,t) is a covariance function such that R(s,s) belongs
to L,, then

r
R(s,s +t)ds

ί R(s,s)ds

is the characteristic function of an absolutely continuous
distribution. Conversely, every such characteristic function
has the latter representation (put R(s,t) = g(s)g(t)). The use
of this new result is that certain functions are directly seen to be
of the second form but not the first; hence, they can be identified
as characteristic functions of absolutely continuous distributions.

1. The main theorem. Let R(sJ), -oo< s,t <o°, be a
complex-valued Borel function of two variables. It is a covariance
function if for any positive integer n, and any set of pairs (shUi),
i = l, ,π,

ι = l / = 1

By Kolmogorov's existence theorem and the well known moment
properties of Gaussian processes, for every covariance function there
exists a probability space and a complex Gaussian process X(t),
-oc<t<co, on the space such that

EX(t) = 0 for all ί, EX(s)X(t) = R(sJ) for all s9t.

We say that X is associated with R.
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The function R(s,s) is nonnegative because it is equal to
E\X(s)\\ If

Γ
J — CO

(1.1) Γ R(s,s)ds<cc,
J — CO

then there exists an associated process X which is measurable and
satisfies

(1.2) EΓ \X(s)\2ds = Γ E\X(s)\2ds<™.

It also follows that X(t) belongs to L2 almost surely, and so there is a
measurable version of the Fourier transform process

(1.3) X(u)= Γ eiU5X(s)ds, - o o < w < o o .
J-oc

By ParsevaΓs Theorem we also have

(1.4) I" E\X(s)\2ds=±f E\X(u)\2du.

THEOREM 1. Let R be a covariance function satisfying
(1.1). Then the function

(1.5)
I R(s9s + t)ds

R(s,s)ds

is a characteristic function. The corresponding distribution function is
absolutely continuous with the derivative

Γ E\X(y)fdy
J-OC

where X is the associated process satisfying (1.2). Conversely if r(t) is
the characteristic function of an absolutely continuous distribution, then
there exists R satisfying (1.1) such that r is representable as (1.5).

Proof. First we prove the direct assertion. It follows from the
definition of X that
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ί R(s,s + t)ds = Γ EX(s)X(s + t)ds.
J-00 J-00

By virtue of condition (1.1) and the Cauchy-Schwarz inequality, we can
take the expectation outside of the integral, and then apply the Parseval
theorem:

J E Γ X{S)X(S + t)ds = EU\I2TΓ) Γ e'iut\X(u)\2duV

It follows that the ratio in (1.5) is equal to

Γ eiutE\X(-u)\2du

Γ E\X(y)\2dy
J-cc

This is exactly the Fourier transform of the function g{u) in (1.6).
The converse is simple: it is given in the above abstract.

2. Factorable covariances. R is said to be factorable if
there exists a monotone function A(y) and a "kernel" function φ(t,y)
such that

φ(s,y)φ(t,y)dA(y).

The condition (1.1) becomes

Γ Γ \φ(s,y)\2dA(y)ds <co.
J —oo J —oo

It follows (by Fubini's theorem) that φ( , y} belongs to L2 for almost all
y (with repect to dA); thus

- Γ iu

J-oo

exists for all such y. By virtue of the isometry X(t)-+φ(t, ) the
density (1.6) takes the form

f" \φ(-u,y)\2dA(y)
(2.D g(u) = j i ^ .

\φ(u,y)\2dudA(y)
J —00 J —00
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As a characteristic function r(t) is also the covariance function of a
stationary Gaussian process. When the spectral distribution is abso-
lutely continuous, the process has a well known representation as a
moving average of "white noise" on the line (see [2], p. 533). We will
show that when JR is factorable the stationary process with covariance
of the form (1.5) also has a representation as a moving average of
"noise" in the plane. The latter representation is more informative and
easiler to derive in certain special cases (see §4 below).

Let W be a real Gaussian random set function defined over the
plane Borel sets, that is, W(C) has a normal distribution for every plane
Borel set C. Let W have the following moment structure:

EW(C) = 0 for all C
EW(C)W(C') = 0 if C and C" are disjoint (independent incre-

ments) , f

EW\C) = dx I dA (y) if C = B x B' is a product of two linear
sets. JB JB'
Consider the stochastic integral with respect to W, divided by a positive
constant:

Γ Γ φ(x + t,y)W(dχxdy)
(2.2) Y{t) = f ^ j , yr

ιL L
By a direct calculation and by means of the fundamental properties of
the stochastic integral we find that the process Y(t) is stationary (and
Gaussian) with covariance function (1.5).

3. Change of time parameter in the covariance. Let
R(s9t) be a covariance, and f(x) a real Borel function. Then the
composite function R(f(x)J(y)) is also a covariance function (in x and
y). According to Theorem 1, if

(3-D I R(f(x),f(x))dx«»9

then

(3.2)
Γ R(f{x),f(x + t))d

ί" R(f(x),f(x))dx
J -00
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is the characteristic function of an absolutely continuous
distribution. By means of this result we can identify some general and
interesting functions as such characteristic functions.

EXAMPLE. Let σ\t), - oo < t < oo, be the incremental second mo-
ment function of a Gaussian process with mean 0 and stationary
increments {σ\t) = E | U(s +t)~ U(s)\2 where U has stationary
increments). Then the covariance function of the process is

Let f(x) be a Borel function such that

σ\f{x))dx<™\

then (3.1) is fulfilled, and so

(3-3)
ί σ\f(x + t)-f(x))dx

= 1 _ ! ^ _
σ2(f(x))dx

is the characteristic function of an absolutely continuous distribution.
Let f(x) be a Borel function such that

Γ
J —00

\f(x)\'dx = ί
00

for some α, 0 < a g 2; then

(3-4) r ( f ) = l - * Γ \f(x + t)-f(x)\°dx
J

is a characteristic function with an absolutely continuous distribution;
indeed, it is a special case of (3.3) with σ\t) = r . (The fact that (3.4) is
a characteristic function was first proved by Lawrence Shepp in a
private communication.)

This can be used to prove a general result about the space
Lα. According to the classical representation of the characteristic
function of an absolutely continuous distribution as a convolution, there
exists a function / such that

/ :
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and r(t) is representable as

From (3.4) we then conclude that

Γ \f(x + t)-f(x)\adx= Γ
J —oo J —o

As far as / can determine the existence of such an / in L2 for each / in
La is a result unknown up to now.

4. A new proof of Polya's theorem and related
results. Polya described a class of characteristic functions, now
called "Polya characteristic functions". [4] He showed that if r(t) is a
convex function such that r(t) g 0, r(t) = r(-1), r(0) = 1, and
limf-*oor(ί) = 0, then r(t) is the characteristic function of an absolutely
continuous distribution. We will show that such a function is repres-
entable as in Theorem 1, and so provide a new proof of Polya's theorem;
furthermore, we will get an explicit form of the density from the results
of §2, and a stochastic integral representation.

As a convex function, r(t) has an integral representation

(4.1) r ( ί )= Γ f(x)dx,
J\t\

where /(x), x g θ , is nonnegative and nonincreasing, and

/ •

Jo

/(jc)rfx = 1.

Indeed, take / as the negative of the right hand derivative of r (see [3],
p. 5). Extend / to all x by assigning it the value 0 on the negative
axis. Then r(t) is representable as

r(ί) = Γ
This is of the form (1.5) with R(s,t) = min(s,0 Thus r is a charac-
teristic function of the indicated type.

Let I(t) be the indicator function of the positive ί-axis. The
covariance min(s,t) is factorable for positive s and t:
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min(s,ί)= ί I(s-y)I(t-y)dy.
Jo

Put φ(x,y) = I(f(x)-y) and A(y) = y for y >0, and A(y) = 0 for
y^O. It follows from (2.1) that the density function of the Polya
characteristic function is

eiuxΠf(x)-y)dx dy.

The random set function W in (2.2) is the 2-dimensional Brownian
motion with independent increments, and the stochastic integral be-
comes

Y(t)= jj I(f(x + t)-y)W(dχxdy).
{y>0}

Such a representation for the Polya covariance process was recently
given by Cabana and Wschebor [1],
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