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A ring R (with unit element) is called a duo ring if every
one-sided ideal is two-sided. This is equivalent with the ex-
istence of elements r' and ru in R with rs = srf, sr = r"s for
elements r, s in R. We will discuss in this note the following
three problems: (A) Is the localization at a prime ideal P of a duo
ring again a duo ring? (B) Is in a duo ring the P -component of
zero equal to the right (left) P-component of zero? (C) Is in a
noetherian duo domain the semi group of ideals (under
multiplication) commutative?

The answer to all three questions is "no" in general, but
"yes" for (A) and (B) in the noetherian case, and "yes" for (C) if
R is integrally closed in its division ring of quotients.

1. Let R be a duo ring, P a prime ideal in R (necessarily
completely prime). One defines the ideal N = {rER; Sχrs2 = 0 for
Sχ9s2E S - R\P} as the P-component of zero. Since the image 5 of
S = R\P in R = R/N is an Ore-system consisting of nonzero divisors,
thering of quotients Rp = R S~ι = {rs~ι; r E R,s E 5} exists and is equal
to S~ιR. We ask in problem (A) if this ring is again a duo ring. But the
ring constructed in [4] provides us with a counter-example. We repeat
the construction: Let F be the function field Q(ί) in one variable t over
the rational numbers Q. The field F can be ordered by writing
(qot

n + ' ' + qo)(qfJm + + q'0y
ι>0 if and only if qnqm'>0 for a

typical element in F with qn ^ 0 ̂  q'm. Let G be the group of all pairs
(a,b), α >0, a, b in F with (al9 bι)(a2,b2) = (axa2,bxa2+ b2) as
operation. G is an ordered group if we use the lexicographic ordering
and the unit element in G is (1,0). We then form the generalized power
series ring R = Q{{G+}} consisting of all series Σqaga with qa in Q and
{gα}, ga = (1,0) being a well ordered sequence of elements in G. (For
details of this construction see [3]).

For r = Σqaga ^ 0 in R we define v (r) = g0, where g0 = {ga g« ̂  0}
and £>(0) = o° with the usual properties of this symbol. Using this
notation we set P = {r E R v(r) > (1, q) for every q in Q}. This is a
prime ideal in JR and R itself is a duo ring. But (ί, 0)Rp is not a left ideal
in Rp, since (1, - 1) (ί, 0) = (ί, - t) = (ί,0)(l, - t) is not contained in

We wrote in the above argument g = \g in R with 1 the unit
element in Q, g in G.
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It is well known that by using generalized power series rings one
can construct duo domains whose semigroup of principal ideals ^ (0) is
isomorphic to the positive cone of an arbitrary (fully) ordered group.

As a positive answer to a special case of problem (A) we prove the
following:

LEMMA 1. Rp is again a duo ring if Rp satisfies the maximum
condition for principal right and left ideals.

For a proof let us assume that not every right ideal in Rp is
two-sided. Then there must exist an element s in S and an element r
in R such that s~ιrRp^rRp. Since an element s' in R exists with
sr = rs\ we have s~ιrs' = r and obtain

a contradiction. That every left ideal is a right ideal is proved in the
same fashion.

We wrote r, s instead of f, s for elements in Rp as it is done in the
commutative case.

COROLLARY 1. Let R be a noetherian duo ring with a prime ideal
P. For r in JR, not in N, the P-component of zero, and sinS = R\P there
exist elements s',s" in S with sr = rs', rs = s"r.

p

R noetherian implies Rp noetherian and s~ιrRp = rR
follows. This means that s~ιr = rat'1 for elements a in R and t in
S. This leads to rt = rs'a for some s' in R and r{t - s'a) = 0. But Rp

is a local ring, and s' in P implies that (t - s'a) is a unit in Rp and r = 0
in Rp follows contrary to our assumption r not in N.

2. Let I? be a duo ring with a prime ideal P. We defined the
P-component of zero above, and the left P-component of zero is
defined as N{ = {r E R sr = 0 for some s E 5}. Nn the right compo-
nent of zero, is defined in the corresponding fashion, and we ask in
question (B) if N = N, = Nr is true, which is the same as if we ask for
AΓΓ = N,.

The ring I? in 1. can be used to obtain a negative answer to question
(B) as well: R contains the two-sided ideal (ί, t)R = I. We put T = RII
and write Px for the image of P in T. It follows that sr = (1,1) (ί, 0) =

(t, t)inR, but (f, 0)s ^ 0 for all s in R\P if we write a for the image in T
of an element a in R. This means that (ί,0) is contained in the left
Pj-component of zero, but not in the right P,-component of zero in Γ.
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In any duo ring JR a primary ideal Q is defined as an ideal with the
property that ab in Q implies either a or bn in Q for some n or b or a m

in Q for some m. The radical λ/A = {r E J? rn E A for some n} of an
ideal A in R is defined as in the commutative case and the radical of a
primary ideal Q is a prime ideal P; Q is then called P-primary or
belonging to P. If R is a noetherian duo ring then every ideal can be
written as the finite intersection of primary ideals belonging to different
prime ideals. This means that the assumption of the following Lemma
is certainly satisfied if R is a noetherian duo ring.

LEMMA 2. Let R be a duo ring in which the zero ideal is the
intersection of finitely many primary ideals, P a prime ideal in R. Then
N = Nr=D= ΠQh Qi CP, if Π U Qi = (0) is the primary decomposi-
tion of (0).

Proof Let D = Π *=I Qi and it is clear that 1 ̂  k ^ n. For r in N
elements s,, s2 in S do exist with 5,rs2 = 0 E Q, for i = 1, , /c. This
implies r in D and N CD follows. For every Qh j = k 4-1, , n there
exists an element Sj ES Π Q and s =TlSj is still not contained in
P. But sD and Ds are contained in every Qh ί = l, ,n and
sD = Ds=(0) follows. This shows DCNn DCNι and gives the
result.

3. The examples listed in [5] all have the property

(*) aRbR = bRaR.

The duo rings constructed as generalized power series rings show that
(*) is certainly not satisfied by all duo rings. But if JR is duo and
noetherian the method just mentioned leads also to a ring in which the
ideal multiplication is commutative. Our next example (generalizing a
construction used in commutative ring theory, see for example [2]) will
show that nevertheless property (*) is not necessarily satisfied in a
noetherian duo domain.

Let F be the splitting field of p(x) = x3-2 over the rational
numbers Q. Let Ψΐ be the real root of p(x) and V2ω be one of the
complex roots. Then there exists an automorphism σ of F with
σ(V5) = V2ω that fixes Q. We consider the twisted power series ring
K = F[[x,σ]] in one variable over F with elements ΣΓU*'^ where
di E F and dx = xσ(d). Let JR = Q + xK be the subring of K consis-
ting of all those elements whose constant term is contained in Q.

Every element in R can be written as xndn(l + ΣΓ-ix'cfi) and
l + Σx'd is a unit in R.
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Using this representation of elements in R one can show that R is a
duo domain.

To prove that R is noetherian, let, / be any right ideal in R. Let
n = min{m,dm ^ 0 for Σx'd, G /}. (We may assume Iέ (0)) All coeffi-
cients dn of elements in / for this minimal n form a finite dimensional
vectorspace over Q with basis dnΛ, dn2, , dnM say. Then there exist
elements rh ί = 1, , fc, of the form r, = xndn4 + in / and they
generate /.

We observe finally that xRxΨlR^ x^/2RxR
Even though we proved in 1. that every localization at a multiplica-

tively closed system S of a duo ring R is again a duo ring in case R is
noetherian, the above ring R is contained in the ring D = (R Π F) + JCK
which is contained in the quotient ring of R, but is not duo. (R is the
field of real numbers)

The following result will be proved:

THEOREM. Let R be noetherian integrally closed duo
domain. Then aRbR = bRaR for all a, b in R and ideal multiplication
is commutative.

Before proving the theorem we must explain what ik meant by R
being integrally closed. We use the following definition which is
equivalent to the usual one in the commutative case: The duo domain R
is integrally closed if and only if End* (MR) = R for every finitely
generated ideal M^ (0) of R.

For a proof of the theorem let a ̂  0, not a unit, be an element in R
and let P be one of the prime ideals associated with αJR. We will show,
using essentially the commutative theory, see for example [7], that Rp is
a ring satisfying property (*) and that R is the intersection of such rings.

With the help of Corollary 1 one generalizes Theorem 11 on p.214,
Vol I in [7] und obtains an element b in R, not in aR, such that
bPCaR. The ideal P is finitely generated and our assumption
Endκ(P,P) = R implies that a~ιbP£ P. But then there exist elements
p in P and c in R with

bp = αc, where c is not contained in P.

The ring Rp exists and aRp = acRp = bpRp CbPRp CaRp follows. This
means that bPRp is equal to aRp and further PRP = pRp.

The local ring Rp has therefore a principal maximal ideal pRp and is
a noetherian duo domain. This implies that the intersection Π(pRp)

n

is zero (the Krull intersection theorem holds for noetherian duo
domains) and that the powers p nRP of pRP are the only ideals ^ (0) of
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Rp. We can conclude further that P is a prime ideal of height 1 in
R. Especially property (*) is satisfied in Rp. It remains to show that
R = Γ\RP, where the intersection is taken over all prime ideals with
height 1 in R. Let s'ιr be an element in this intersection. Then
r E Π(sRp ΠR) follows. But sRp ΠR = Q is the P-primary compo-
nent of sR or R if s£P. We obtain rG Π(sRpΠR) = sR and
s'ιr E R, as desired. Finally aRbR = abR = Π abRp = Π ftαJRp =
foαl? = bRaR. Ideal multiplication in 1? is commutative, since the
product AB,A,B arbitrary ideals, is the sum of the ideals abR, for
elements a in A and b in B.

COROLLARY 2. Every ring between a noetherian integrally closed
duo domain and its division ring of quotients is again a duo domain.
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