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It is natural to ask how far the theory of closed invariant
subspaces for 2 P (G) can be extended to Birnbaum-Orlicz spaces
£ A ( G ) . If G is a compact group and A satisfies the Δ2-
condition for M ̂  M0 = 0, the class of all closed invariant sub-
spaces of 2 Λ ( G ) is exactly the family {(%A)P' P CΣ} where Σ is
the dual object of G. Distinct subsets of Σ engender distinct
subspaces.

The generalization of the classical 2P- spaces foreshadowed by Z.
W. Birnbaum in 1930 [1] was the subject of a long article by Z. W.
Birnbaum and W. Orlicz [2]. In the next four decades their theory has
been extended by many writers, among them G. Weiss [9] and W.
Luxemburg who invented convenient new definitions. More recently
M. Jodeit and A. Torchinsky [7] introduced a generalization of the
concept of Young's function which we adopt here.

The essential introductory definitions and theorems are stated in
§1 proofs may be found in [3], [8] and [9]. In §2 we show that if G is a
locally compact group, the Birnbaum-Orlicz space QA(G) is a left
Banach S r module and a right Banach (2X Π 2ΐ)-module. Finally in §3
we establish the result stated in the synopsis. Our notation is as in [4],
[5] and [6].

1. Preliminaries. (1.1) A function A on [0,°°[into[0,<»]will
be called a generalized Young's function if it is left continuous on ]0,<»[,
A (u )lu is nondecreasing for u > 0, and A (0) = 0. It easily follows that

(i) A(au)^aA(u) for O ^ α ^ l and 0^w<o°.

The zero function and the function A(u) = Q°.ξ]0M(u)are trivial
generalized Young's functions. Throughout the remaining of this work
the letter A will denote a nontrivial generalized Young's function. We
also fix a = suρ{w: A(u) = 0}.

A Young's function Ao is associated to A by the equality A0(u) =

\UA(t)ltdL
Jo

(1.2) Let (X,M,μ) be an arbitrary measure space. The set
fiΛ(X,Jί,μ) of all complex-valued, M -measurable functions defined

μ-a.e. on X, such that A (a \f |) dμ < °° for some positive number a is
Jx
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called a Birnbaum-Orlicz space. Where no confusion seems possible,
we will write 2A(X) for 2A(X,Λί,μ).

The equality

(i) pA(/) = inf{*e]0,oo[:f A(\f\/k)dμ ^ 1}
Jx

defines a nonnegative finite-valued function on 2A (X) which is a norm
in case A is convex. This suggests that we define a norm on QA (X) by
the equality ||/||A = pAo(f). With this norm, 2A (X) is a Banach space.

If / G βA(G) the following hold:
(ii) | | / | | Λ S P Λ ( / ) S 2 | | / | U ;

(iii) ί A(\f\lpA(/))dμ ^ 1, provided that pA(/) > 0 .
Jx

Denoting the Young's complement of A by A, for / in SA (X) and g
in 2A(X) we obtain

(iv)

If μ (X) is finite, QA (X) is contained in 2,(X) and for / G 2Λ (X) we
have

(v) J\fJ\^[4KA)-χ\lμ(X))]\\f\\A,
where (A) ! denotes the right inverse of A.

(1.3) THEOREM. Let f be a complex-valued measurable function
vanishing outside of a σ-finite set. Suppose that

ThenfeQA(X) and we have \\f\\A ^NA(f).

(1.4) THEOREM. Let X be a locally compact Hausdorff
space. Let μ be a measure obtained from a nonnegative linear func-
tional on (£oo(X), and let M be the σ-algebra of all μ-measurable subsets
of X. Then each function f in 2 A (X) can be written as fx + /2, where
f\ = f & for some σ-compact set F, and I/2I = aPλif) μ-a.e. on X. In
particular, if a = 0 , then f vanishes μ- a.e. outside of a σ-con pact set.

2. Birnbaum-Orlicz spaces of functions on
groups. From here on we consider spaces 2A(G,Λί,λ), where G is a
locally compact group, λ is a left Haar measure on G, and M is the

σ- algebra of λ- measurable subsets of G. We will often write fdλ as
JG

L f(x)dx.
G

Our first theorem follows easily from (20.2) in [4], and the fact that
2i(G,Λί,max{l,l/Δ}λ) is complete.



BIRNBAUM-ORLICZ SPACES OF FUNCTIONS ON GROUPS 353

(2.1) THEOREM. A complex-valued measurable function f belongs
to 2,(G) Π £ΐ(G) // and only if max{l, 1/Δ}/ E 2,(G). The equalities

0) 11/11 = 11/11. + IO/Δ)/||,,
and

(ii) lll/IIMImaxίU/Δ}/!!,
define equivalent norms on the linear space 2i(G) ΓΊ 2ΐ(G). Precisely,
we have

(iii) HI / III ̂  11/11 s 2 III / III for all f E 2 , ( G ) n 2 ΐ ( G ) .
eifΛer of ίΛwβ ίwo norms, 2i(G) Π S*(G) is α Banach space.

(2.2) THEOREM. Lei f be a function in S A (G) and let s be an

arbitrary element of G. Then the functions j and fs belong to 2 Λ (G)
and we have:

(i) P

(ii) p

Proof. It is clear that sf and /, are λ- measurable. Relations (i)
and (ii) trivially become equalities if pA (/) = 0. Suppose that pA (/) > 0.

Theorem (20.1.i) in [4], and (1.2.iii) yield the inequality pA(sf)^
pΛ(/), from which (i) easily follows. Using (20.1 .ii) in [4], and once
again (1.2.iii) we write

(1) ί A(\fa\lpA(f))dkSMs'ί)9
JG

which establishes (ii) in case Δ(s~ ι)= 1. For Δ(5"*)> 1, use (1) and
(l.l.i).

The following result is part of (20.7) in the Russian edition of
Hewitt and Ross "Abstract Harmonic Analysis", to be published.

(2.3) LEMMA. Let f be α λ-measurable function on G. The
following functions are λ x A-measurable on G x G:

), (χ,y)-*f(y-ιχ), (χ,y )

(2.4) THEOREM Let fbe a function in 2A (G) vanishing outside of
a σ-compact set F and let g be a function in 2i(G). The integral

0 g */(*)=[ f(y-ιx)g(y)dy
JG

(i)

exists and is finite for almost all x in G. The function g*f is in 2A(G)
and we have
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(ii) ||g*/||Λ
If g e S,(G) Π fiΐ(G), the integral

(Hi) f*g(χ) = ί My-i)f(χy-i)g(y)dy
JG

exists and is finite for λ-almost all x in G. The function /*g is in
QA(G) and we have

(iv) | | / *g | | Λ g4 | | / |U |g | | ,
where || || is as in (2.1.i).

Proof We may suppose that g vanishes outside of a σ- compact
set E. Thus the function (x,y)-*f(y~ιx)g(y) vanishes outside of the
σ- compact set (EF) x E.

Let v be an arbitrary function in ZA(G). From (2.3) we know that
the mapping (jc,y)—• v(x)f(y~ιx)g(y) is A x λ-measurable. Plainly
this function vanishes outside of (EF) x E.

Recalling (1.2.iv) and (2.2.i), we obtain

f ί \v(x)f(y~ιx)g(y)\dxdy
JG JG

Thus we may apply (13.10) of [4] to conclude that

ί ί \v(x)f(y-ιx)g(y)\dydx
JG JG

(2) = ί ί \v(x)f(y-ιx)g(y)\dxdy.
JG JG

ίG

that

(3)

From (13.10) and (13.8) in [4], we see that the integral

v(x)f(y~ιx)g(y)dy exists and is finite for λ- almost all x in G, and

X-*Ό(X) f(y~ιχ)g(y)dy.
JG

is a function in Si(G); in particular it is a λ- measurable function.
We define g */(JC) by the equality (i), provided the integral exists,

and put g */(*) = 0, otherwise. It is easy to see that g */(*) is finite
λ- a.e. on G.

In (3) we may take v to be any function in (£oo(G). Recalling
(11.42) in [4], we see that g */ is λ- measurable.
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Consider v in QA(G) with pA(v)^l. Taking account of (1) and
(2), we obtain

ί \v(x)(g*f)(x)\dx^\ f \v(x)f(y-ίx)g(y)\dydx
JG JG JG

= ί ί lv(x)f(y-ιx)g(y)\dxdy^2pA(f)\\g\\ι.

JG JG

This implies that

(4) NA(g*f)^2pA(f)\\g\l.

Now we observe that g *f(x) = 0 for x outside of the σ- compact
set EF. Thus from (4) and (1.3), we conclude that g*fe&A(G) and
that ||g */||Λ ^ 2pA(f)\\g ||i. Applying (1.2.ii) to this last inequality, we
obtain (ii).

Next suppose that g G S,(G) Π S?(G). Consider the function

(5) (x,y)-*v(x)f(xy-ι)g(y)Δ(y-ί),

where v is an arbitrary function in 2 A (G). As in the previous case, we
see that the function (5) is λ x λ- measurable and vanishes outside of
the σ- compact set (FE) x E. From (1.2.iv) and (2.2.H) we obtain

ί \v(x)f(xy-ι)\dx S2max{l,Δ(y)}pA(/)PA(»).
JG

Thus we have

ί f \v(x)f(xy-ι)g(y)My-ι)\dxdy
JG JO

^2pA(f)pλ(υ) ί max{l,Δ(y-')}|g(y)|dy
J G

= 2pA(f)PA(v)\\max{hllA}g\\ι

the last inequality being a consequence of (2.1.ii) and (2.1.iii).
From this point on the proof is completely analogous to that

presented above for g * / and we omit it.
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Theorem (2.4) serves as a lemma for the following general result.

(2.5) THEOREM. Suppose that f G £Λ(G) and g GSi(G). Then
the integral

(i) * • / ( * ) = [ f(Vιχ)g(y)dy
JG

exists and is finite for λ-almost all x in G. The function g *f is in
2A(G) and we have

00 IU*/MMI/IUI|g||.,
where k = 4 if a = 0 or if G is a-compact, and k = 6 otherwise.

IfgE £,(G) Π 2ΐ(G), the integral
(iii) f*g(x)=\ Δ(y~ι)g(y)dy

JG

exists and is finite for λ - almost all x in G. The function f*gis in 2A (G)
and we have

(iv) ||/*g||Ag/c||/|M|g||,
where k is as above and || || is as in (2.1.i).

Proof If G is σ- compact, the assertion follows immediately from
(2.4). If a = 0, it follows from (1.4) and (2.4). Thus we may suppose
that a > 0 and that G fails to be σ- compact.

Using (1.4), we may write / = /i + /2, where /I = /£F for some
σ- compact set F, and |/2| = apA(f). It follows that

(i) f

for all JC in G, and hence that g */2(x) exists and is finite for all x in
G. A short computation, in which we use (1), gives us

Applying (2.4.i) to /„ we conclude that

ί
J

fι(y-ιχ)g(y)dy + I f2(y~ιχ)g(y)dy
G JG

exists and is finite for λ - almost all JC in G. Hence the same is true of
*•/(*).

Inequality (ii) follows from (2) and (2.4.ii) applied to /,. The
remaining assertions are similarly established.

(2.6) THEOREM. The space 2,(G) Π Sί(G) is a Banach algebra.
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Proof. For / and g in £,(G) Π 2ΐ(G) we obtain

(1)

Thus (2.1) and (2.5.i) tell us that g */ G £,(G) Π 2ΐ(G). We use (1) to
prove that β,(G)nfiΐ(G), with the norm || || defined in (2.1.i), is a
normed algebra:

H* * / N ||* II, 11/11, + ||(l/Δ)g II,||(1/Δ)/||, =i ||gII11/11.

(2.7) THEOREM. The space £A(G) is a left Banach ^-module
and a right Banach (2, Π Q^-module.

Proof. For g in S,(G) and / in SΛ (G), (2.5.ii) tells us that there is a
positive number k such that ||g */| |A ̂ /c | |/ | | A ||g||,.

Next we show that, for / as above, and gλ and g2 in fii(G), we have
g\ * (gi */) = (gi * g2) */. Using (20.1) of [4], we obtain the equality

ί f(v'ly-lx)g2(v)dv=i f(v-ιx)g2(y-ιv)dv,
JG JG

which implies that

(1) g,*te2*/)0O= ί ί /(^IJc)g2(y-1ϋ)g.(y)rft;dy.
JG JG

By (2.5.i), gi * (g2 * /) is in 2A (G), and hence the integral in (1) exists
and is finite λ- almost everywhere in G. From (1.4) we know that gi
and g2 vanish outside of σ- compact sets Ex and E2, respectively. Thus
the function (v,y)-+f(v~ιx)g2(y~ιυ)gί(y) vanishes outside of the σ-
compact set ( E i £ 2 ) χ Eλ. By (2.3) this function is A x λ- measurable.

We apply (13.10) in [4] to conclude that for λ- almost all x in G we
have

gi*(g2*/)(x)= I ί f(v-ιx)g2(y'ϊv)gi(y)dydυ
JG JG

(v)dv =(g,*g2)*/(Jt).= ί
JG

It is now clear that 2Λ (G) is a left Banach Si - module. The proof
that 2A (G) is a right Banach (£, Π L ΐ)- module is similar and we omit it.

3. Closed ideals in £ Λ ( G ) for G a compact
group. Throughout this section we suppose that G is compact and that
λ ( G ) = l .
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ί
(3.1) THEOREM. /// and g are in %A(G) the equality g */(*) =

f(y~ίx)g(y)dy defines a function in 2A(G). We have

(i) \\g*f\\A^(l6l(AΓ(\))\\f\\A\\g\\A.

Proof Follows from (2.5.i), (1.2.v) and (2.5.ii).

(3.2) THEOREM. The BirnbaumΌrlicz spacedA(G) is a Banach
algebra under a norm which is a positive constant times \\-\\A.

Proof Define nA(f) = (16/(Ay\l))\\f\\A and use (3.1).

(3.3) THEOREM. Suppose that A satisfies the Δ2-condition for
u g w0 = 0. Then the space 5t(G) of trigonometric polynomials on G is
\\ \\A-dense in LA(G).

Proof Our hypothesis imply that (£(G) is || ||Λ-dense in
S Λ (G): see [3] or [8]. Theorem (27.39.ii) of [5] tells us that 3Γ(G) is
uniformly dense in K(G), and it is easy to see that &(G) is also
II IU- dense in

(3.4) THEOREM. Let A be as in (3.3). Suppose that S is a closed
linear subspace of 2 A (G). Then S is a left [right] ideal in £A(g) if and
only if S is closed under the formation of left [right] translates.

Proof Since G is unimodular, it follows from (2.1) and (2.7) that
2A (G) is a Banach 2, - module with respect to convolution. From (3.2)
we know that βΛ (G) is a subalgebra of 2i(G) which is a Banach algebra
with the norm nA. Taking (3.3) into account, we see that LA (G) has the
properties stated in (38.6.a) in [5]. Thus the theorem follows im-
mediately from (38.22.b) of [5].

(3.5) THEOREM. Let A be as in (3.3). Then the class of all closed
two-sided ideals in S A (G) is exactly the family {(fiA )P: P C Σ}. Distinct
subsets of Σ engender distinct ideals.

Proofs. This is a direct application of (38.7) in [5].
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