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Let X be a second countable topological space, 21 a σ-field o!
subsets of X containing all open sets and μ a finite positive
measure on 91, such that (X, 9l,μ) is a complete measure space
and μ(U) > 0 for every nonempty open U CX.

Then there exists a lifting φ : 91-*21 which satisfies U Cφ(U)
for every open subset U CX.

Basic notations and definitions. Throughout this paper N
denotes the nonnegative integers and R+ the nonnegative real
numbers. Moreover

X is a second countable topological space ( ^ 0 ) ,
21 is a σ-field of subsets of X containing all

open sets,
μ :9l-»R+ is a countable additive measure,

satisfying μ ( l / ) > 0 for every nonempty open
subset U CX.

For A, B E 21 we denote by A C B the fact that μ(A \B) = 0 and write
A ~ B if A C J5 and B C A.

A subset ^ C 2 t is called an Π-system iff 0 G f , X E f and
A Π B E & for all A, J3 E #
For an Π -system ^ C?ϊ a mapping δ : ̂ -»2ί is a partial (lower) density
iff it satisfies the following conditions:

(i) A~B implies δ(A) = δ(B)
(ii) A ~ δ ( A )
(iii) δ(0) = 0 and δ(X) = X
(iv) δ(A ΠB) = «(A)n δ(B) for every A , B E f ,
A mapping δ :3l->?l with the above properties is called a (lower)

density and if moreover
(v) δ(X\A) = X \ δ ( A ) for every A <Ξ%

is fulfilled δ is a lifting.
A lifting or density δ : §ί—> SI is called strong iff in addition
(vi) 17 Cδ(E/) for every open U CX
Let us restate one of the fundamental properties of partial de-

nsities. For an Π-system ^C2l , a partial density δ:ί^—>9l, and A,
B G f with A CJ3 we have δ(A)Cδ(J3). In particular δ preserves
inclusions.
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Existence of Strong Densities, The following two lemmas
will provide us with the basic tools for the proof of the main theorem.

LEMMA 1. Let 2F C3ί bean Π -system, δ :3F-*% a partial density,
and Fo G 21 arbitrary. Suppose Λo E 21 is such that Λo ~ Fo and for F",
F', F in 9,

F " C F 0 implies δ(F")CA0,

and

Fo Π FCF' implies Ao Π δ(F) Cδ(F').

Then &o = 9 U {F Π F o : F G 9} is an Π -system containing 9 U {Fo}
and the mapping δ0: ^0-^2ί defined by

[δ(F')Γ)A0 if F = F' Π Fowith F'E &

is a partial density which extends δ.

Proof. It is obvious that 3̂ 0 is an Π -system containing & U {Fo}.
To show that δ0 is well-defined let F, F ' be elements of 9.

(1) Assume F - F' Π Fo. This implies

FCFo, F C F a n d F ' Π F 0 C F .

From our assumptions concerning Λo we may therefore conclude

(*) δ(F) CΛ0 and Λo Π δ(F') Cδ(F).

Since δ is a partial density F C F ' implies δ(F) C δ(F'). This inclusion
combined with (*) gives us δ(F) Cλ0 Π δ(F') Cδ(F). Hence the equal-
ity δ(F) = Λo Π δ(F') is established.

(2) Assume FΠF0- F' Π Fo. Then we have

F Π F o C F ' a n d F ' Π F 0 C F .

Again it follows from our assumptions concerning Ao that

A o n δ ( F ) C δ ( F ' ) and A0Π δ(F') Cδ(F)

and hence that
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(1) and (2) together prove that δ0 is well-defined and that for
F , G e f 0 the fact F~G implies δo(F) = δo(G). According to its
definition δ0 obviously satisfies the other conditions for a partial
density. It is also clear that δ0 extends δ.

LEMMA 2. Let & CSI be a countable Π -system, Fo E 21 arbitrary,
f o = f U { F n F f l : F 6 ? } and δ\&-*%a partial density. Then there
exists a partial density δo:^o~^Sί which extends δ.

Proof According to Lemma 1 the assertion of Lemma 2 is true if
we can prove the existence of a set AQ E 91 such that F o ~- Ao and for F,
F \ F" in 9,

F " C F 0 implies δ(F")CA0,

and

F o Π F C F ' implies AQΠ δ(F) Cδ(F').

As an easy calculation shows A 0E 21 fulfills the last two conditions if
and only if

δ(F")CΛ 0 Cδ(F')UCδ(F)

whenever F, F \ F"E& satisfy F " C F 0 C F ' U CF.

To establish the existence of such an Ao let

<S: = {δ(F"):F"C9 and F"CF0}

and

F , F G f and F 0 C F ' U CF}

Since ^ is countable the sets ^ and $? are also countable.
Therefore A: = U $ and B : = Π $f are in 31.
Property (ii) of partial densities implies

GCFo and F0CH

for every G E $ and H E $?. Due to the countable additivity of μ we
therefore get:

(t) A CFo and F0CB.

Let G E » and H E $f be arbitrary. Then there are F, F \ F" E y with
F"CF0CF'UCF, G = δ(F"), and /ί = δ(F') U Cδ(F). From F"C
F1 U CF we conclude
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F" ΓΊ F C F ' and hence δ(F") Π δ(F)Cδ(F')

which implies G = δ(F") Cδ(F') U Cδ(F) = H. This gives us

(Φ) A C B .

It is a consequence of (t) and (Φ) that

and
GCAoCH

for all G G #, H G X.
Hence the statement of Lemma 2 is proved.

PROPOSITION 1. Let ^ be a countable base of the topology of X and
9 the field generated by 38. Then there is a partial density δ: 9 —• 91
satisfying UCδ(U) for every ί/ G 38.

Proof Without loss of generality we may assume that 38 is stable
under finite unions and intersections and contains 0 and X.

For B G 38 let 38 (J3): = {A G S3 : A - B} and define φ : 3ft ->9l by
φ(B)= U Sδ(B). Since U ®(B) is open for every B G 38 and since 91
contains all open sets φ is a well-defined map from 39 to SI. It is an
immediate consequence of the definition of φ that for A, B G 58 the
equivalence A ~ B implies φ(Λ) = φ(B). Since 38 (B) is countable we
have B ~ φ(B).

According to our assumptions every nonempty open set has strictly
positive measure. Therefore 38(0) = {0} and hence φ(0) = 0 .
Since X G 38 (X) the condition φ(X) = X is fulfilled.

φ also preserves finite intersections. To show this let A, B G 38
be arbitrary. Because 38 is stable under finite intersections we have

{A' Π B':A'e&(A)9 £'G38(B)}C38G4 Π B)

and consequently

φ(A) IΊ φ(B) = (U » ( Λ ) ) Π ( U 38(JB))

= U{A' Π B ' :A ' G 38(A), B' G 38(B)}

C U 38(Λ Π B) = φ(A Π β ) .

To prove the inverse inclusion let C G 3&(A Π B ) b e arbitrary. Since
38 is stable under finite unions we have A U CG38(Λ) and hence
C Cφ(A). For the same reasons C Cφ(B) is true and therefore the
inclusion
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φ(A ΠB)Cφ(A)Πφ(B)

holds.
Using Lemma 2, the fact that 9 is countable, and the fact that 38 is

an Π-system contained in 9, we see by induction that φ can be
extended to a partial density δ: 9-*%. From the definition of φ it
follows immediately that U Cφ(U) = δ(U) for all Ue&.

The following two propositions are stated without proofs. The
proofs can be found in [4], although a slightly different notation is used
there.

PROPOSITION 2. ([4], p. 64, Lemma 4.6). Let (Slrt)nεN be a sequ-
ence of σ-fields of subsets of X with

and δn: 2ϊn -» SI a partial density with

for every n E N.
Denote by 2L ί/ie σ-field generated by U {2ln: n E N}. Tften

a partial density δ*: Slβo-̂ Sl satisfying δoo|Slπ = δπ for all n EN.

Though the above proposition is not explicity stated in his paper
Tray nor proved it independently in [8].

PROPOSITION 3. ([4], p. 61, Satz. 4.3 and Lemma 4.4). Let i£be a
σ-field, Λ0E % arbitrary, and δ \ϊ£ -> % a partial density.

Then 20: = {(B Π Ao) U (JB'\Λβ): J5, B' E £} is a σ-field containing
£ U {AQ} and there exists a partial density δQ: J£0-»Sί extending δ. δ0

can be defined by

δo((J5 ΠAo)U(J3'\Λo))

= (δ((JBnβ1)U(B/\B1))ΠΛo)U(δ((B\B2)U(JB'nB2))\Λo),

where B, B' are elements of X and where Bχ&J£ satisfies AoC B, and
BXCA for every AE.£ with AQCA while B2E& satisfies CAQ C B2 and
B2QC for every CE& with CA0C C.

THEOREM 1. There exists a strong lower density p :?t~>Sl.

Proof. Let ^ be a countable base for the topology of X and 9 the
field generated by $. According to Proposition 1 there is a partial
density δ :^-*9ϊ such that UCδ(U) for every UEffi.
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Let / : N—> 9 be a bijection and 2ln the field generated by {/(m): 0 ^
m gn} . It is clear that 2ϊn C& is a cr-field. Define δπ :2ln-*2ϊ by
δ n = δ | 2 l n . Then (2ϊn,δn)neN fulfills the assumptions of Proposition
2. Thus there is a partial density δoo: SL-»9L extending δ, where 3L is
the σ-field generated by SF = U {21 n : n G N}. Using Zorn's lemma and
Propositions 2 and 3 we will show that δ* can be extended to a density
p:2t->21.

To this purpose define

SΓ: ={(<e,φ):£σ-field containing SL and ψ: i?^SΪ

a partial density with ψ 15L = δα,}-

For (2, ψ), (Se\ φr) G SΓ let (if, ^) ^ ( # ' , <K) denote the fact that iP CiP'
and ψ \J£ = ψ. It is easy to check that ^ is an order-relation on 2Γ.

Next we will prove that J is inductively orderby by S .
Let 3(C!£ be any totally ordered subset. The following two cases
have to be considered.

(1) If for every sequence (#„, ψn)n€ΞN j n 3ίΓ there is a (if, ι̂ ) ^ 9T
with (^ ,ψ R )g(^ ,ψ) for al l j tGN, then iP: = U{^:(^,iA) G 3T} is a
σ-field containing SI* and ψ:J£-+yί defined by ψl^^ψ for every
{X, φ) G X is ajpartial density extending δoo. Hence we have (J£,φ)E?Γ
and (SB, φ) S (iP, ψ) for all CSP, ψ) G X

(2) If there exists a sequence («SPΠ, ΨJΠEN in X such that for each
(g, φ)EX there is an n G N with (i?, φ) ^ (iPn, ψn) we have

U {^: (iP, φ) G 3T} = U {gn: n G N} = 5.

Let So, denote the σ-field generated by 2 . From Proposition 2 we
conclude the existence of a partial density ψao:&co-><& which extends all
φn and hence we get (iP, ψ) ^ (iP., <Jrβ) G SΓ for all (iP, ι̂ ) G 3ίΓ.

Since (9L, δoo) G 5" and thus 5 V 0 , Zorn's lemma gives us the
existence of a maximal element (^,ρ) in 5".
From Proposition 3 we conclude 9 = SI and hence p is a density. To
prove the theorem it remains to check that p is strong. To this end let
U be any open subset of X. Then

17= U{BG38:BC17}

for B G 38 and B C 1/ we have

p(U) D p(JB) = δocU?) = δ(B) = δ(B) D B

and thus

17= U { B G $ : B

Hence p is strong.
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The main theorem. To verify the main theorem we need one
more lemma which is an immediate consequence of a more general
theorem of von Neumann and Stone ([6], p. 372, Th. 18). Easier direct
proofs were given by Sion in [7], Gapaillard in [3], Tray nor in [8] and the
author in [4]. Let us restate this lemma but omit the proof.

LEMMA 3. If (X, 9l,μ) is complete and δ :9l-*9l a density then
there is a lifting φ :2l-*2l with δ(A)Cφ(A) for every AeW.

THEOREM 2. // (X, 9ϊ,μ) is complete then there exists a strong
lifting φ\%^%.

Proof, According to Theorem 1 there is a strong density δ : 91 -»
91. From Lemma 3 we get a lifting φ ;9ϊ -> 91 satisfying δ(A) Cφ(A)
for all A e9l. Since δ is strong we therefore conclude UCδ(U)C
φ(U) for every open set U CX.

Hence φ is a strong lifting.

Notes.

(1) All previous statements of this paper remain true for σ-finite
measure spaces because for any σ-finite measure on a σ-field there
exists a finite measure with the same nullsets.

(2) The methods of proofs show that for an arbitrary finite or
σ-finite measure space (Y, if, v) and any countable 9 Cif, such that for
each^inite ^ C 9 with v{ Π ^) = 0 we have Π 8 = 0 , there is a density
δ:<£-^<e satisfying F Cδ(F) for all F G 9.

If (Y, <£, v) is furthermore complete then there is even a lifting
φ :££->££ with these properties.

(3) Let X be a second countable topological space, 91 the Borel-
field in X and 2B a σ-ideal in 91 containing no nonempty open
sets. Then 51 has at most the power of the continuum. Assuming the
continuum hypothesis and using the same methods as in the first part of
this paper we get a strong density δ SI—> Sϊ with respect to 2δ. From a
lifting theorem of von Neumann-Stone (certificate [6] or [4], p. 47, Satz
3.3) we may conclude (using the continuum hypothesis another time)
that there is even a strong lifting φ :9l->9l.

(4) The existence of a strong lifting was well-known for separable
metric spaces with finite outer regular measures strictly positive on
non-empty open sets (see Ionescu-Tulcea [5] and Sion [7]) and for
locally compact metrizable spaces with (not necessarily σ-finite) Radon
measures whose support is the whole space (see Ionescu-Tulcea
[5]). The first fact is a special case of the main theorem of this paper
while the second fact can be derived from this theorem using Proposi-
tion 2, p. 108 in Ionescu-Tulcea [5], and observing that any metrizable
compact space is separable.

(5) Bichteler proves in [1] a strong-lifting-theorem implying the
existence of a strong lifting for locally compact metrizable spaces with
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Radon measures whose support is the whole space. But the result of
this paper are no (immediate) consequences of Bichteler's theorem.

(6) Eifrig [2] gives a proof of the existence of a strong lifting for
the interval [0, 1] using methods of nonstandard-analysis.

(7) For applications of strong-lifting-theorems to integral rep-
resentations and disintegration of measures see Ionescu-Tulcea [5] and
Sion [7].
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