Pacific Journal of Mathematics

MAPPINGS BETWEEN ANRS THAT ARE FINE HOMOTOPY EQUIVALENCES

WILLIAM EMERY HAVER

Vol. 58, No. 2 April 1975

MAPPINGS BETWEEN ANRS THAT ARE FINE HOMOTOPY EQUIVALENCES

WILLIAM E. HAVER

It is shown in this note that every closed UV^{∞} - map between separable ANRs is a fine homotopy equivalence.

We extend Lacher's result [6,7] that a closed UV^{∞} -map between locally compact, finite dimensional ANRs is a fine homotopy equivalence to the case of arbitrary separable ANRs. It is hoped that this theorem will be useful in studying manifolds modelled on the Hilbert Cube. (See [1], section PF3. Added in proof. See also [9]).

A set $A \subset X$ has property UV^{∞} if for each open set U of X containing A, there is an open V, with $A \subset V \subset U$ such that V is null-homotopic in U. A mapping $f: X \to Y$ of X onto Y is a UV^{∞} -map if for each $y \in Y$, $f^{-1}(y)$ is a UV^{∞} subset of X. The mapping f is said to be closed if the image of every closed set is closed and proper if the inverse image of every compact set is compact. An absolute neighborhood retract for metric spaces is denoted an ANR. If α is a cover of Y and g_1 and g_2 are maps of a space A into Y, g_1 is α -near g_2 if for each $a \in A$ there is a $U \in \alpha$ containing $g_1(a)$ and $g_2(a)$. The map g_1 is α -homotopic to $g_2, g_1 \stackrel{\sim}{\simeq} g_2$, if there is a homotopy $\lambda: A \times I \to Y$ taking g_1 to g_2 with the property that for each $a \in A$ there exists $U \in \alpha$ containing $\lambda(\{a\} \times I)$. A map $f: X \to Y$ is a fine homotopy equivalence if for each open cover, α , of Y there exists a map $g: Y \to X$ such that $fg \stackrel{\sim}{\simeq} id_Y$ and $gf \stackrel{f^{11}(\alpha)}{\simeq} id_X$.

Various versions of Lemma 3 have been proven by Smale [8], Armentrout and Price [2], Kozlowski [5] and Lacher [6]. The difference in this lemma is that K is not required to be a finite dimensional complex.

Let K be a locally finite complex and j be a nonnegative integer. When there is no confusion we will not distinghish between the complex K and its underlying point set |K|. If σ is a simplex of K, then $N(\sigma,K)=\{\tau < K \mid \sigma \cap \tau \neq \phi\}$ and $\mathrm{st}(\sigma,K)=\{\tau < K \mid \sigma < \tau\}$. Also K^j will denote the j-skeleton of K and ${}^jK=\{\sigma < K \mid |N(\sigma,K)| \subset |K^j|\}$. Let $\mathscr U$ be a covering of a space Y and B a subset of Y. The star of B with respect to $\mathscr U$, $\mathrm{st}^1(B,\mathscr U)$, is the set $\{U \in \mathscr U \mid B \cap U \neq \phi\}$. Inductively, $\mathrm{st}^n(B,\mathscr U)$ is defined to be $\mathrm{st}(\mathrm{st}^{n-1}(B,\mathscr U))$. A covering $\mathscr V$ is called a star refinement of $\mathscr U$ if the covering $\{\mathrm{st}^n(V,\mathscr V)/V \in V\}$ refines $\mathscr U$. Every open covering of a

metric space has an open starⁿ refinement for each positive integer n (c.f. [3]). We start by stating without proof two easily verified lemmas.

- LEMMA 1. Let K be a locally finite complex. Suppose $\phi: K \to Y$ is a map, \mathcal{U} is an open cover of Y, and k is a nonnegative integer. Then there is a subdivision \tilde{K} of K so that:
 - (a) if σ is a k-simplex of \tilde{K} , then $\phi(N(\sigma, \tilde{K})) \subset U$, for some $U \in \mathcal{U}$,
 - (b) if $\sigma < {}^{k-1}K$, then $\sigma < \tilde{K}$.

We will call such a subdivision, \tilde{K} , a (k, \mathcal{U}) -subdivision of K. We note that for any vertex, v, of \tilde{K} with $v \not\in {}^{k-1}K$ it follows that $\phi(\operatorname{st}(v, \tilde{K})) \subset U$ for some $U \in \mathcal{U}$.

- LEMMA 2. Let \mathcal{U} be an open cover of the paracompact space Y and $f: X \to Y$ a closed UV^{∞} -map. Then there is an open locally finite refinement \mathcal{V} of \mathcal{U} such that for each $V \in \mathcal{V}$, there is a $U \in \mathcal{U}$ satisfying
 - (a) $\operatorname{st}(V, \mathcal{V}) \subset U$
- (b) if m is a positive integer and the map $\gamma: \partial B^m \to f^{-1}(\operatorname{st}(V, \mathcal{V}))$ is given, then γ can be extended to $\bar{\gamma}: B^m \to f^{-1}(U)$. We will call such a refinement, \mathcal{V} , a UV^∞ star refinement of \mathcal{U} .
- LEMMA 3. Let $f: X \to Y$ be a closed UV^* -map of an arbitrary space, X, onto the paracompact space Y. Let K be a locally finite complex and J a subcomplex of K. Let $\phi: K \to Y$ and $\psi': J \to X$ be mappings such that $f\psi' = \phi \mid J$. Then given any open cover, α , of Y there exists a map $\psi: K \to X$ extending ψ' so that $f\psi$ is α -near ϕ .
- **Proof.** Let K_0 be a $(0, \alpha)$ -subdivision of K and let $\alpha_0 = \alpha$. Define inductively a sequence of covers of Y, $\{\alpha_i\}_{i=0}^{\infty}$, and subdivisions of K_0 , $\{K_i\}_{i=0}^{\infty}$, such that for each i > 0, α_i is a UV^{∞} star refinement of α_{i-1} and K_i is an (i, α_i) -subdivision of K_{i-1} .

Define $\psi_0: K_0^0 \to X$ by letting $\psi_0(v) = \psi'(v)$ if $V \in J$ and otherwise an arbitrary element of $f^{-1}(\phi(v))$. Assume inductively that there exist maps $\{\psi_i: K_i^i \to X\}_{i=0}^n$ such that for $0 \le i \le n$:

- (1) $\psi_i | J \cap K_i^i = \psi' | J \cap K_i^i$ and if $j < i, \psi_i | {}^j K_i = \psi_i | {}^j K_i$,
- (2) if v is a vertex of K_i , $\psi_i(v) \in f^{-1}(\phi(v))$,
- (3) if σ is a j-simplex of K_i^i and $k = \dim \operatorname{st}(\sigma, K_i^i)$, then $\phi(\operatorname{st}(\sigma, K_i)) \cup f\psi_i(\sigma) \subset U$, for some $U \in \alpha_{k-i}$.

[Note that $\psi_0: K_0^0 \to X$ satisfies these conditions since if σ is a 0-simplex of K_0^0 the dimension of $\operatorname{st}(\sigma, K_0^0)$ is 0 and the fact that K_0 is a $(0, \alpha_0)$ -subdivision of K implies that $\phi(\operatorname{st}(\sigma, K_0)) \cup f\psi_0(\sigma) \subset U$ for some $U \in \alpha_0$.]

We wish now to define $\psi_{n+1}: K_{n+1}^{n+1} \to X$ satisfying conditions (1)-(3) for i = n + 1. For each vertex v of K_{n+1} , let

$$\psi_{n+1}(v) = \begin{cases} \psi_n(v), & \text{if } v \text{ is a vertex of } {}^nK_n \\ \psi'(v), & \text{if } v \in J \end{cases}$$

an arbitrary element of $f^{-1}(\phi(v))$, otherwise

Assume (subinductive statement) that $\psi_{n+1}|K_{n+1}^r$ has been defined so that

- (1') $\psi_{n+1}|J \cap K_{n+1}^r = \psi'|J \cap K_{n+1}^r$ and $\psi_{n+1}|^n K_n \cap K_{n+1}^r = \psi_n|^n K_n \cap K_{n+1}^r$,
- (2') if v is a vertex of K_{n+1} , $\psi_{n+1}(v) \in f^{-1}(\phi(v))$,
- (3') if σ is a j-simplex of K'_{n+1} and $k = \dim \operatorname{st}(\sigma, K^{n+1}_{n+1})$, then $\phi(\operatorname{st}(\sigma, K_{n+1})) \cup f\psi_{n+1}(\sigma) \subset U$, for some $U \in \alpha_{k-j}$.

[Note that $\psi_{n+1}|K_{n+1}^0$ has been defined in such a manner that properties (1')-(3') are satisfied. Properties (1') and (2') follow immediately from the definition. Let v be a simplex of K_{n+1}^0 . If v is a vertex of nK_n , then property (3') follows from the fact that ψ_n satisfies property (3) of the main inductive statement since in this case dim $\mathrm{st}(v,K_{n+1}^{n+1})=\mathrm{dim}\,\mathrm{st}(v,K_n^n)$. Suppose v is not a vertex of nK_n . By the remark following Lemma 1, $\phi(\mathrm{st}(v,K_{n+1}))$ is contained in some element of α_{n+1} and hence property (3') is again satisfied.]

Now let σ be an (r+1)-simplex of K_{n+1} . If σ is a subset of J, let $\psi_{n+1}|\sigma=\psi'|\sigma$. If $\sigma<^nK_n$, let $\psi_{n+1}|\sigma=\psi_n|\sigma$. Otherwise, let $k=\dim \operatorname{st}(\sigma,K_{n+1}^{n+1})$. For each r-simplex, τ , in $\partial\sigma$, there is a $u_\tau\in\alpha_{k-r}$ containing $\phi(\operatorname{st}(\tau,K_{n+1}))\cup f\psi_{n+1}(\tau)$. Let τ' be a fixed r-simplex in $\partial\sigma$ and note that $\psi_{n+1}(\partial\sigma)\subset f^{-1}(\operatorname{st}(u_{\tau'},\alpha_{k-r}))$. Since α_{k-r} is a UV^∞ star refinement of α_{k-r-1} , there is a $U\in\alpha_{k-r-1}=\alpha_{k-(r+1)}$ containing $\operatorname{st}(U_{\tau'},\alpha_{k-r})$ and an extension of $\psi_{n+1}|\partial\sigma$ which maps σ into $f^{-1}(U)$. We call this extension ψ_{n+1} and note that $\phi(\operatorname{st}(\sigma,K_{n+1}))\cup f\psi_{n+1}(\sigma)\subset U$. In this manner, extend ψ_{n+1} to K_{n+1}^{r+1} and note that conditions (1')-(3') are satisfied. This completes the subinductive argument and hence the main inductive argument.

We now define $\psi \colon K \to X$ by $\psi(x) = \lim_{n \to \infty} \psi_n(x)$. For any $x \in K$, the local finiteness of K assures that there exists an integer N so that $x \in {}^NK_N$. Hence for $n \ge N$, $\psi_n(x) = \psi_N(x)$. Therefore ψ is well-defined and continuous. Let $x \in K$ and let σ be a simplex of maximal dimension containing x. Then there exists an integer N such that $|\sigma| \subset {}^NK_N$. Choose a simplex B in NK_N containing x and note that $\psi(x) = \psi_N(x)$. By inductive statement (3), there is an open set $U \in \alpha_i$, for some $i \ge 0$, such that $\phi(\operatorname{st}(B, K_N)) \cup f\psi(B) \subset U$. Since α_i refines $\alpha_0 = \alpha$, there is a $V \in \alpha$ such that $\{\phi(x)\} \cup \{f\psi(x)\} \subset V$. Since ψ extends ψ' , this completes the proof of Lemma 3.

REMARK. By a slightly more cumbersome process, ψ can be chosen so that $f\psi$ is a α -homotopic to ϕ .

THEOREM. Let X and Y be separable ANRs and $f: X \to Y$ be a closed UV^{∞} -map. Then f is a fine homotopy equivalence.

Proof. Let α be an open cover of Y, Let α_1 be a star⁵ refinement of α and α_2 a star refinement of α_1 . Let β be an open refinement of α_2 such that any two β -near maps from any space into Y are α_2 -homotopic (such refinements exists since Y is an ANR, c.f. [4]).

By Hanner's characterization of separable ANRs (c.f. [4]), there exist a locally finite polyhedron Q and maps $c: Q \to Y$ and $s: Q \to Y$ with property that $sc \not \ge id_Y$. By Lemma 3, there is a map $v: Q \to X$ such that fv is β -near s. Define $g: Y \to X$ by g = vc. Note that fg is β -near sc and hence $fg \not \ge sc$. But $sc \not \ge id_Y$ and hence $fg \not \ge id_Y$. Denote this α_1 -homotopy by h; then, $h: Y \times I \to Y$ is a α_1 -homotopy with $h_0 = id_Y$ and $h_1 = fg$.

It remains to be shown that gf is $f^{-1}(\alpha)$ homotopic to id_x .

Choose a locally finite polyhedron, P, maps $b: \rightarrow P$ and $r: P \rightarrow X$ and a homotopy $W: X \times I \rightarrow X$ with the following properties:

- (a) $W_0 = rb$ and $W_1 = id_X$
- (b) W is limited by $f^{-1}(\alpha_1)$ and by $(gf)^{-1}(f^{-1}(\alpha_1))$.

Next, define $H: P \times I \to Y$ by $H(p,t) = h_t(fr(p))$ and note that H(p,0) = fr(p) and H(p,1) = fgfr(p). Define $G': P \times \{0,1\} \to X$ by G'(p,0) = r(p), G'(p,1) = gfr(p). Then by Lemma 3 there is a map $G: P \times I \to X$ extending G' with the property that fG is α_1 -near H.

Define $\psi: X \times I \rightarrow X$ by $\psi(x,t) = G(b(x),t)$.

Note that: $\psi_0(x) = G(b(x), 0) = G'(b(x), 0) = rb(x)$ and $\psi_1(x) = G(b(x), 1) = G'(b(x), 1) = gfrb(x)$.

Now, W is a homotopy taking rb to id_X and is limited by $f^{-1}(\alpha_1)$. Also, since W is limited by $(gf)^{-1}$ $(f^{-1}(\alpha_1))$, $gfW: X \times I \to X$, defined by gfW(x,t) = gf(W(x,t)), is a homotopy taking gfrb to gf and is limited by $f^{-1}(\alpha_1)$.

Recall that α_1 is a star⁵ refinement of α . Therefore, to show that $id_X^{f^{-1}(\alpha)}gf$, it suffices to show that $f\psi\colon X\times I\to Y$ is limited by star³ (α_1) . Fix $x\in X$. Since the homotopy h is limited by α_1 , there exists $U\in\alpha_1$ with $h(f(x)\times I)\subset U$. we claim that $f(\psi(x\times I))\subset \mathrm{st}^3(U)$.

Fix $t \in I$. Recall $f(\psi(x,t)) = f(G(b(x),t))$. Thus there exists $U' \in \alpha_1$ such that $f^{-1}(U')$ contains x and rb(x). Hence f(x) and frb(x) are elements of U' and $U \cap U' \neq \phi$. Since h is limited by α_1 , we can choose $U'' \in \alpha_1$ so that $h_t frb(x)$ and frb(x) are elements of U''. Note that $U'' \cap U' \neq \phi$. Also, there exists $U''' \in \alpha_1$ containing H(b(x),t) and f(G(b(x),t)), since fG is α_1 -near H. But $H(b(x),t) = \sum_{i=1}^{n} f(i) f(i)$

 $h_t frb(x)$. Hence $U''' \cap U'' \neq \phi$ and we have completed the proof of the theorem by showing that $f\psi \colon X \times I \to Y$ is limited by $star^3(\alpha_1)$.

Added in proof. I would like to thank Bob Edwards for some suggestions concerning this paper and for pointing out that George Kozlowski [Images of ANR's, to appear] has shown that a UV^{∞} -map between ANR's is a homotopy equivalence.

REMARK. If in addition it is assumed that X and Y are locally compact and f is a proper map it follows immediately that f is a proper fine homotopy equivalence.

REFERENCES

- 1. R. D. Anderson and N. Kroonenberg, Open problems in Infinite-dimensional topology, to appear.
- 2. S. Armentrout and T. Price, Decompositions into compact sets with UV properties, Trans. Amer. Math. Soc., 141 (1969), 433-442.
- 3. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- 4. S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
- 5. G. Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc., 21 (1969), 88-92.
- 6. R. C. Lacher, Cell-like mappings I, Pacific J. Math., 30 (1969).
- 7. R. C. Lacher, Cell-like mappings of ANRs, Bull. Amer. Math. Soc., 74 (1968), 933-935.
- 8. S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc., 8 (1957), 604-610.
- 9. J. West, Compact ANR's have finite type, Bull. Amer. Math. Soc., 81 (1975), 163-165.

Received March 12, 1974 and in revised form July 20, 1974.

University of Tennessee

PACIFIC JOURNAL OF MATHEMATICS EDITORS

RICHARD ARENS (Managing Editor)

University of California Los Angeles, California 90024

R. A. BEAUMONT

University of Washington Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$72.00 a year (6 Vols., 12 issues). Special rate: \$36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

Copyright © 1975 Pacific Journal of Mathematics
All Rights Reserved

Pacific Journal of Mathematics

Vol. 58, No. 2

April, 1975

Zvi Artstein and John Allen Burns, Integration of compact set-valued fun	nctions	297		
Mark Benard, Characters and Schur indices of the unitary reflection gro	$up [321]^3 \dots$	309		
Simeon M. Berman, A new characterization of characteristic functions of	of absolutely continuous			
distributions		323		
Monte Boisen and Philip B. Sheldon, <i>Pre-Prüfer rings</i>		331		
Hans-Heinrich Brungs, Three questions on duo rings				
Iracema M. Bund, Birnbaum-Orlicz spaces of functions on groups		351		
John D. Elwin and Donald R. Short, Branched immersions between 2-me	anifolds of higher			
topological type		361		
Eric Friedlander, Extension functions for rank 2, torsion free abelian gro	oups	371		
Jon Froemke and Robert Willis Quackenbush, The spectrum of an equat	ional class of			
groupoids		381		
Barry J. Gardner, Radicals of supplementary semilattice sums of associa	tive rings	387		
Shmuel Glasner, Relatively invariant measures		393		
George Rudolph Gordh, Jr. and Sibe Mardesic, Characterizing local con-	inectedness in inverse			
limits		411		
Siegfried Graf, On the existence of strong liftings in second countable to	pological spaces	419		
Stanley P. Gudder and D. Strawther, Orthogonally additive and orthogon	nally increasing			
functions on vector spaces		427		
Darald Joe Hartfiel and Carlton James Maxson, A characterization of the maximal groups in β_X		437		
Robert E. Hartwig and S. Brent Morris, <i>The universal flip matrix and the</i>		157		
faro-shuffle		445		
William Emery Haver, Mappings between ANRs that are fine homotopy		457		
J. Bockett Hunter, <i>Moment sequences in l^p</i>		463		
Barbara Jeffcott and William Thomas Spears, Semimodularity in the con		467		
Jerry Alan Johnson, A note on Banach spaces of Lipschitz functions		475		
David W. Jonah and Bertram Manuel Schreiber, <i>Transitive affine transfo</i>		473		
groups		483		
Karsten Juul, Some three-point subset properties connected with Menger		105		
boundaries of plane convex sets		511		
Ronald Brian Kirk, <i>The Haar integral via non-standard analysis</i>		517		
Justin Thomas Lloyd and William Smiley, <i>On the group of permutations</i>		317		
support		529		
Erwin Lutwak, <i>Dual mixed volumes</i>		531		
Mark Mahowald, The index of a tangent 2-field		539		
Keith Miller, Logarithmic convexity results for holomorphic semigroups		549		
Paul Milnes, Extension of continuous functions on topological semigroup		553		
Kenneth Clayton Pietz, Cauchy transforms and characteristic functions.		563		
James Ted Rogers Jr., Whitney continua in the hyperspace $C(X)$		569		
Jean-Marie G. Rolin, <i>The inverse of a continuous additive functional</i>		585		
William Henry Ruckle, Absolutely divergent series and isomorphism of		605		
Rolf Schneider, A measure of convexity for compact sets		617		
Alan Henry Schoenfeld, Continous measure-preserving maps onto Pean		627		
V. Merriline Smith, Strongly superficial elements		643		
Roger P. Ware, A note on quadratic forms over Pythagorean fields		651		
Roger Allen Wiegand and Sylvia Wiegand, Finitely generated modules of		655		
Martin Ziegler, A counterexample in the theory of definable automorphis	sms	665		