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ON M-PROJECTIVE AND M-INJECTIVE MODULES

G. AzuMAaYYA, F. MBUNTUM AND K. VARADARAJAN

In this paper necessary and sufficient conditions are
obtained for a direct sum @P,., A, of R-modules to be M-
injective in the sense of Azumaya. Using this result it is
shown that if {4,}.., is a family of R-modules with the pro-
perty that @..x 4. is M-injective for every countable subset
K of J then @P,.; A, is itself M-injective. Also we prove
that arbitrary direct sums of M-injective modules are M-injec-
tive if and only if M is locally noetherian, in the sense that
every cyclic submodule of M is noetherian. We also obtain
some structure theorems about Z-projective modules in the
sense of Azumaya, where Z denotes the ring of integers.
Writing any abelian group A as D® H with D divisible and
H reduced, we show that if A is Z-projective then H is torsion
free and every pure subgroup of finite rank of H is a free
direct summand of H.

Most of these results were motivated by the results of B. Sarath
and K. Varadarajan regarding injectivity of direct sums.

1. M-projective and M-injective modules. Throughout this
paper R denotes a ring with 1+ 0 and all the modules considered
are left unitary modules over R. By an ideal in B we mean a left
ideal in B. M denotes a fixed R-module. We first recall the notions
of M-projective and M-injective modules originally introduced by one
of the authors [1].

DEFINITION 1.1. An R-module H is called M-projective, if given
a diagram

H
5
M 2, N—s0
of maps of R-modules with the horizontal sequence extact, 3 a map

h: H— M such that @oh = f.
The notion of an M-injective module is defined dually.

REMARK 1.2. Regarding R as a left module over itself in the
usual way it turns out that R-injective modules are the same as the
injective modules over R. However R-projective modules are not
the same as projective modules over R.

9
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LemMMA 1.3. FEvery divisible abelian group D is Z-projective.

Proof. Trivial consequence of the fact Hom (D, Z) = 0 = Hom (D,
Z,) whenever D is divisible.

REMARK 1.4. We know that projective modules over Z are free.
Hence no divisible abelian group D # 0 is projective over Z.

LEMMA 1.5. Suppose H is a torsion free abelian group with
the property that every pure subgroup of rank 1 of H is a free
direct summand of H. Then every pure subgroup of finite rank
of H 1is also a free direct summand of H.

Proof. By induction on the rank of the subgroup. Let S be a
pure subgroup of H of rank & with k>1. We can pick a pure subgroup
B of S of rank 1. Then B is also pure in H and hence by assumption
B is free abelian and H = C& B for some C. Since SO B we get
S=E8nC)@B. Now SNC is of rank (k — 1) and pure in S and
hence pure in H. By the inductive hypothesis SN C is free abelian
and H=(SNC)P L for some L. From CoOSNC we now C =
SNCPBLNC). Thus S=(SNC)EP B is free abelian and

H=CHB=ENC)HLNC)DB
=(SNCO)BBRLNC) =SHLNC).

DEFINITION 1.6. We say that a torsion free abelian group H
has property (P) if every pure subgroup of finite rank of H is free
and a direct summand of H.

Given any abelian group A we can write A as D& H where D
is the maximal divisible subgroup of A and H is reduced. Also H =
A/D is well-determined up to an isomorphism. We will refer to any
group isomorphic to H as the reduced part of A.

THEOREM 1.7. Suppose H is reduced abelian group which is Z-
projective. Then H 1is torsion-free with property (P).

Proof. It is well-known that a reduced abelian group which is
not torsion-free admits of a nonzero finite cyclic direct summand
[3, Th 9, p. 21]. Clearly the identity map Z,— Z, (for m = 1) can
not be lifted to a map Z,,— Z. This proves that Z, is not Z-pro-
jective. Hence if a reduced abelian group H is Z is Z-projective it
has to torsion free.

For any @ #+ 0 in H let S, = {x€ H|x and a linearly dependent
over Z}. Then it is trivial to see that S, is a pure subgroup of
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rank 1 in H. Moreover S, is reduced since H is. Hence 3 a prime
p such that S, #= pS,. Let ¢ce S, be such that c¢¢ pS,. Since S, is
a pure subgroup of H we see that c¢ pH. Hence 7(c) = 0 where
». H— H/pH denotes the canonical quotient map. Regarding H/pH
as a vector space over Z, we can comylete 7(c) to a basis {y(c)} U
{uj};e; of H/pH over Z,. Let 0: H/pH-— Z, be the Z,linear map
determined by 6(3(c)) =1e Z, and 6(u;) =0 for all jeJ. The Z-
projectivity of H now yields a map h: H— Z with

H

e
h,/ oy
.z'/ l
Z— Z,—0
@

commutative, where @: Z— Z, is the canonical quotient map. From
@h(e) = 0on(c) = 1e Z, it follows that oh(c) # 0. Hence g = h\S,:
S,— Z is a non-zero homorphism. It follows that Img =%kZ for
some integer k= 1. Composing ¢ with the obvious isomorphism
kZ = Z we get an epimorphism ¢’:S,— Z. Since Z is free the

sequence S, 270 sphts S, being a torsion-free group of rank

1 it now follows that S, 2. Zis an isomorphism. Thus for a # 0
in H the subgroup S, is isomorphic to Z.

Our next step is to show that S, is a direct summand of H.
Let ¢ be a generator for S, = Z and V = {a € Hom (H, Z)|a(c) # 0}.
From what we have seen already V is a nonempty set. Let [ =
min,., ja(c)]. We will show that ! = 1. Suppose on the contrary
{ > 1. There definitely exists an element @€ V such that a() =1.
Let p be a prime divisor of I and I = kp. Now c¢ pS,. The argu-
ment used already yields a map k: H— Z such that @h(c) =1¢ Z,.
This means A(c) = np + 1 for some ne Z. Writing n = kd + r with
de Z and r an integer satisfying 0 < r < k consider the element
h—dacHom (H, Z). Now, {(h—d}j(c)=nup+1—dli=np+1—
dkp =rp+ 1. Clearly, 0<rp+1<rp+p=@C+Dp=kp=1.
Thus =h —da is in V and [B(c)| = rp + 1 < I, contradicting the
definition of I. This contradiction proves that 2~ = 1. It now follows
that 3 an a: H— Z with a(c¢) = 1, in which case 3 a splitting ¢: Z—
H for a with #(1) =¢. Hence S, = ¢(Z) is a direct summand of H.

It is clear that every pure subgroup of rank 1 of H is of the
form S, for some a@ 0 in H. Now appealing to Lemma 1.5 we
immediately see that H has property (P).

CorOLLARY 1.8. Let A = D H with D the maximal divisible
subgroup of A. If A is Z-projective then H is torsion-free and
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has property (P).

COROLLARY 1.9. A finitely generated abelian group A is Z-
projective <= A 1is free of finite rank.

COROLLARY 1.10 Suppose H is a reduced decomposable torsion-
Sfree abelian group. (i.e., H is the direct sum of rank 1 torsion-free
abelian groups). Then H is Z-projective — H s free.

ProposiTioN 1.11. Let p be a prime. An abelian group A is
Z ~injective if and only if A= (Bucs Z,.) D B, a direct sum of
coptes of Z . with an abelian group B having mo p-torsion.

Proof. Suppose 4 = (@, Z,.) & B with B having %o p-torsion.
Since @.es Z,., is divisible, it is injective over Z and hence Z .-
injective as well. The only subgroups of pr are me and Zpk for
some integer k£ = 1. When B has no p-torsion Hom (Z,, B) =0 =
Hom (Z,., B). This proves that B is Z .-injective.

Conversely, assume A to be Z .-injective. Let ac A be an ele-
ment in the p-primary torsion of A. Suppose the order of a is p*.

Then 3 a homomorphism Z ,—— A carrying the element 1of Z,
to a. Since A is Z .-injective 3 an extension g: Z . —Aof f. Then
Im g is divisible, e cIm g and Im g is in the p-primary torsion of A.
This proves that the p-primary torsion of A is divisible. Since any
divisible subgroup of A is a direct summand of A and since any
divisible p-primary abelian group is a direct sum of copies of Z .
it follows that A = (@..; Z,..) @ B with B having no p-torsion.

We now recall the definitions of an M-epimorphism and an M-
monomorphism due to one of the authors [1], and state two results
due to him,

DEFINITION 1.12. (i) Let A, B be R-modules and 6: A—B an
epimorphism. @ is said to be an M-epimorphism if 3 a map +: 4 —
M such that Ker § N Ker 4 = 0.

(ii) Let a: A— B be a monomorphism. « is called an JM-mono-
morphism if 3 a map B: M — B such that Ima and Im 8 together
generate B.

ProposiTION 1.18 [1],[5]. The following conditions on an R-
module H are equivalent.

(1) H is M-projective

(2) Given any M-epimorphism 6: A— B and any f:H—BE
a map h: H— A such that 0ch = f

(3) Every M-epimorphism 6: C— H splits.
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ProrosiTION 1.14. Dual of Proposition 1.13.

DEFINITION 1.15. For any module H let C?(H)(respy C‘(H)) =
the class of all modules M such that H is M-projective (respy M-
injective). For any module M let C,(M) (respy C,(M)) denote the
class of M-projective (respy M-injective) modules.

ProposiTION 1.16 [1], [5].

(1) C?(H) 1is closed under submodules, homomorphic images
and the formation of finite direct sums.

(2) Ci(H) is closed under submodules, homomorphic tmages
and arbitrary direct sums.

(8) C,(H)(respy C.(H)) s closed under direct sums (respy direct
products) and direct summands (respy direct factors)

REMARKS.

1.17. In general C?(H) is not closed under formation of arbitrary
direct sums. For instance let R = Z and H = Q the additive group
of the rationals. From Lemma 1.3 we see that @ is Z-projective.
Thus Ze C"(Q). Let J be an infinite set and for each e Jlet M, =
Z. Then each M,c C?(Q). Clearly @ is a quotient of @,.; M, and
the identity map of @ can not be lifted to a map of @ into @..; M..
This means @..; M, ¢ C*(Q).

1.17. Since C?(H) is closed under submodules from 1.17 it follows
that C?(H) in general is not closed under formation of arbitrary
direct products.

1.18. In general C*(H) is not closed under formation of arbitrary
direct products. Let R = Z and H = Z. From Proposition 1.11 we
have Z e C¥(Z). Let M =1]I, Z,., the direct product taken over
all primes. It is known and quite easy to see that 3 a subgroup of
M which is isomorphic to Q. If Me Ci(Z) from (2) of Proposition
1.16 it would that Qe C*(Z). Since the identy map of Z can not be
extended to a map of @ into Z it follows that Z is not Q-injective.
In other words Q¢ CiZ). This in turn implies M¢ C*(Z).

2. M-injectivity of direct sums. For any module A and any
x€ A we denote the left annihilator {x € R|Ax = 0} of = by L,.

DEFINITION 2.1. An element x€ A is said to be dominated by M
if L,> L, for some me M.

Given a family {A},.; of modules let x be the element of []..; 4.
whose a-component is xz,. Let I, = {A€ R|Ax€ @P.cs 4a}-

DEFINITION 2.2. We call xe[],.; 4, a special element if Iz, =
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0 for almost all «. In otherwords I a finite subset F' of J such that
Az, = 0 for all ve I, and for all a¢ F.

ProrosITION 2.8. A is M-injective = A is Rm~injective for all
me M.

Proof. This is an easy consequence of 1.16 (2). The implica-
tion = follows from the closedness of C%(4) under submodules. As
for =, by the closedness of C%(4) under direct sums it follows
that 4 is @,., Bm-injective. Since M is a homomorphic image of
D...x Bm and since C*(4) is closed under homomorphic images, it
follows that A is M-injective.

THEOREM 2.4. @..; A4, is M-injective < each A, is M-injective
and every element of [l..; A, dominated by M is special.

Proof. =: Let xewA, be dominated by M, that is, there is
an m € M such that L, C L.. This implies that the mapping »m —
rx(h e R) is well defined and gives a homomorphism f: Rm—7A,.
The image of the submodule I.m by f is clearly Lx(c @ A,). Thus
the restriction of f to I.m is regarded as a homomorphism I m — &
A,. Since PA, is Rm-injective, this homomorphism can be extended
to a homomorphism Rm — @ A, which means that there exists an
ue @ A, such that Ax = zu for all xe I,. It follows then that ILxa =
Lu, for all «eJ. But since ua = 0 for almost all a, it follows that
Txa = 0 for almost all a too, i.e., x is special.

«=: Let meM and consider the cyclic submodule Rm of M.
Let I be a left ideal of B. Then IM is a submodule of Rm. (Con-
versely every submodule of Rm is of the form Im with a suitable
left ideal I). Let there be given a homomorphism h:Im — @ A,.
Then since P A, c7A, and w4, is M-whence Rm-injective, k can be
extended to a homomorphism Rm —rmA,. Let xewA, be the image
of m. Then the homomorphism is given by am —Ax(A€ R). There
fore it follows that Ix = h(Im) C @ A, whenece I I,. On the other
hand, since clearly L, C L, x is dominated by M and thus x is
special by assumption, i.e., I.x, = 0 whence Iz, = 0 for almost all
a. Let u be the element of & A, whose «a-component is =z, or
0 according as Iz, # 0 or Irx, = 0. Then it is clear that \u = A\x
for all e I. Further, it is also clear that L, < L, C L, and therefore
the mapping Mm — \u(n € R) is well defined. This mapping gives a
homomorphism f: Rm — @ A, which is an extension of %, because
F(vm) = \u = ax for all xe I. This implies that P A, is Bm-injective
and so is M-injective (by Proposition 2.3).
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THEOREM 2.5. The direct sum of any family of M-injective
modules is M-injective <= every cyclic submodule of M is noetherian.

Proof. <. Let {A,} be a family of M-injective modules. Let
x be an element of w4, dominated by M; thus there is an me M
such that L,cL,. Consider I.m. Since clearly L. c I, whence
L,c1, it follows that I,/L, = I.m. On the other hand, I.m is a
submodule of the Noetherian module Rm. Hence I,/L, is finitely
generated, i.e., there exist a finite number of elements A, Ny, <++, A,
of I, such that

I.= RN+ RN+ --- + RN, + L,

It follows therefore Iz, = B\, + Rynaxa 4+ --- + BMh2x, for all
components x,. Since, however, for each ¢, Mz, = 0 for almost all
a, it follows that Iz, = 0 for almost all «, that is, x is special.
Thus ¢ A, is M-injective by Theorem 2.4.

=, Let Rm, me M be any cyclic submodule of M. Then R/L, =
Rm, and there is a (1 — 1) correspondence between the left ideals
of R containing L, and submodules of Rm. Thus in order to show
that Rm is noetherian it is sufficient to prove that there is no pro-
perly ascending infinite sequence of ideals of R containing L,. Suppose
there exists an infinite sequence L,cl,cl,cI,C--- of ideals I;
with I; = I;,, for every 7 = 1. Let B; = R/I;, 7;: R— B; the canonical
projection. Let A; be the injective hull of B;. Then each A; is M-
injective also. By assumption 3 an me M s.t. I, D L,. The element
X = (2;)j2, 0f [Ijs1 A; where x; = n; (1) is clearly dominated by M.
For any ne I; we have Az, =0 for k= j. Hence I;C I, forall j =
1. Let \; be any element of I, which is not in I;. Then Nz; # 0
and »;e I,. This proves that Ix; = 0 for every 5 = 1. This means
X is not a special element and hence by theorem 2.4, @;., 4; is not
M-injective. This proves the implication =.

REMARK 2.6. A result of H. Bass [2] asserts that arbitrary
direct sums of injective modules over R are injective < R is noetherian.
Theorem 2.5 is a generalization of this result of H. Bass. When
M = R we get the result of Bass.

THEOREM 2.7. Suppose {A,}.c; s a family of R-modules such
that for every countable subset K of J, @uex As 18 M-injective. Then
@D.., A, is itself M-injective.

Proof. Assume that @,., A4, is not M-injective. Then, by
Theorem 2.4, there exists an x€ [[,., 4, which is dominated by M
but is not special, i.e., I.x, = 0 for infinitely many acJ. Let K be
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an infinite countable subset of the infinite set {aeJ|Lx, # 0}. Let
y be element of [[,.x A, whose a-component ¥, is equal to z, for
all e K. Then clearly I,C I, so that it follows that y is dominated
by M and Ly,= Lz, +#0 for all ac K. This implies again by
Theorem 2.4 that @..x A. is not M-injective (because each A, is
M-injectiue by the assumption of our theorem). This is a contradic-
tion, and so the proof is completed.
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