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This article deals with a multivalued differential-boundary
operator on a nondense domain regarding it as a linear re-
lation. The adjoint relation is derived. It is shown that
these dual relations have the same form as exhibited in
earlier papers where the operators involved were uniquely
defined on dense domains. Self-adjoint relations are con-
gsidered on the Hilbert space .#°2[0,1]. The connection with
self-adjoint operators defined on subspaces of [0, 1] is made.

1. Introduction. This article is a continuation of [8] and [9].
The notation is the same. We review it briefly. X is the Banach
space &[0, 1], 1 < p < <o, consisting of all n-dimensional vectors

¥
y=\:
Yn

ol = | 1l [Fae]”

X* is the dual space <40, 1], 1/p + 1/g = 1.
A and B are m X n matrices, m < 2, satisfying rank (A: B) = m.
C and D are (2n — m) X n matrices such that <‘é g) is nonsingular.

(é ]g)—1 is given by _éi _%D, where A and B are m x n matrices

satisfying rank (4: B) = m, and C and D are (2n — m x n) matrices.
Hence the large matrices above may be multiplied together in the
usual component-like manner.

K is a regular m X n matrix valued function of bounded varia-
tion satisfying dK(0) = 0, dK(1) = 0. K, is a regular r x n matrix
valued function of bounded variation satisfying dK,(0) =0, dK,(1) = 0.

H is a regular » X (2m — m) matrix valued function of bounded
variation satisfying dH(0) =0, dH(1) =0. H, is a regular » X s
matrix valued function of bounded variation satisfying dH,(0) =0,
dH,(1) = 0. P is a continuous % X %# matrix.

Now let &7 denote those elements y ¢ X satisfying

under the norm

1. For each y there is an s x 1 matrix valued constant + such
that
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y + H[Cy(0) + Dy(V)] + Hyp

is absolutely continuous.

2. ly =(y + H[Cy(0) + Dy(1)] + Hy) + Py exists a.e. and is
in X,

3. Ay(0) + S:dK(t)y(t) + By(l) =0, S:dKl(t)y(t) —0.

The purpose of this article is to discuss the expression ! on &
as a linear relation L, defined by its graph

L={y lyy:yezjcXx X.

Note that ly may be multivalued. If H, possesses a linear combi-
nation of columns which is absolutely continuous, then ly is unique
only modulo such combinations. Note also that & may not be
dense in X. If K, possesses linear combinations of rows which are
absolutely continuous then < is orthogonal to those combinations.

In seaching for the adjoint of L, we encounter the following
problem even if ly is uniquely defined: If <r is dense in X, ye D,
and fe X*, let [y, f] denote f(y). Then <*, the domain of L*, in
X* is given by

* ={f:[ly, f] = [y, g] for some ge X* and ye &}.

If I* denotes the form of the adjoint, then [*f =g is uniquely
defined. For if I*f =h as well, then [y, g — h] =0 for all ye =.
If y—y, then [y,9 — h]— [y, 9 — k] =0, and ¢ — h =0 in X*

However, if <7 is not dense in X, then I*f = ¢ is defined only
modulo &+ (Kelley and Namioka [7; p. 120]). If d*e &* and
fe =+, then

ly, fl=1[y,9 +d*] =1y, 9].

Hence I*f = g + d* for all d*e &z*. The adjoint is not unique.

This is well borne out with the adjoint actually derived in section
IV. The domain of L*, <r*, consists of those elements z¢ X*
satisfying

1. for each z there is an » x 1 matrix valued constant ¢ such
that
z + K*[42(0) + Bz(1)] + K¢

is absolutely continuous.



STIELTJES DIFFERENTIAL-BOUNDARY OPERATORS III 127

2. 'z = —(z + K*[A2(0) + Bz(1)] + K*g) + P*z exists a.e. and
is in X*,

3. Cz(0) + gldH*(t)z(t) + Da(l) = 0, Sldﬂl*(t)z(t) =0.
] ]

The relation L* is defined by its graph
L* ={(z,l72): 2 2*}Cc X* x X*.

When < is not dense in X because of the absolute continuity
of a linear combination of rows of K,, then l*z is multivalued since
¢ is not unique. Further when ly is multivalued because of the
absolute continuity of linear combination of columns of H,, then &*
is orthogonal to those combinations and is not dense in X*.

Although multivaluedness and nondensity of domains cause pro-
blems when the setting is a standard Banach space such as X, the
setting of limear relation in X x X handles these problems quite
nicely.

Further examples illustrating this phenomenon have been pre-
sented recently by Coddington [5], [6].

II. Linear relation. (See Arens [1] or Brown [12].) A linear
relation T on X is a set valued mapping with domain and range in
X whose graph G(T) is a linear subspace of X x X.

If y is in the domain of T, D(T), and Ty denotes the image of
y under T, then the graph of T in X x X is given by

G(T) = {(y, Ty); ye D(T)} .

(It is clear that a linear operator can be identified with its graph,
so that it also can be thought of as a linear relation.) It is easy to
see that T(0) is a subspace of the range of T, R(T); that z, y¢
T(y) if and only if # =y mod T(0); that if y,e T(y), then T(y) =
yr + T(0); and that

G(T) ={(y, y= + T(0): y € D(T), y- € T(¥)} .

The null space of T, N(T), is given by N(T) = {y: (y, 0) e G(T)}
and is a subspace of X.

T is closed if G(T) is closed. The closure of T is dermined by
G(T). T is normally solvable if it is both closed and has closed
range. Closure of T implies the closure of both N(T) and T(0).

The purpose of introducing linear relations is to be able to
define an adjoint for 7. Let [y, z] = 2(y) for ye X, ze X*. This
can be extended to X X X and X* x X* by setting
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(¥, ¥), (24 2)] = (Y 2] + (¥, 2]

when (y, ¥4.)€ X x X and (2, 2,)€ X* x X*. Then T* is identified
with its graph

G(T*) = {(2, 2,): (2, z) € X* X X*, [y, 2] — [y, 2] =0
for all (v, ¥)) e G(T)} .

This, of course, agrees with the standard definition when T is an
operator with dense domain. T7T* has a number of properties similar
to adjoint operators. We refer the reader to [1] or [12] for further
details. We shall use these properties implicitly throughout the
remainder of the article.

III. The adjoint of L. Recall that the expression [*z is given
by

Iz = —(z + K*[A2(0) + Bz(l)] + K*g)' + P*z.
We introduce in addition the expression 17z, given by
"2 = —(z + K*¢, + K*¢) + P*z,
where ¢ and ¢, are appropriate vector valued constants suitably

chosen so the expression within the parentheses is absolutely
continuous.

THEOREM 3.1. (A Green’s formula.) Let y,lyecX and let
z, T ze X*. Then

[, @) — @2y viat
= [A2(0) + BaW]*] 4y(©0) + By + | dkv |
¥ [6:4(0) + Da(l) + S:dH*z]*[Cy(O) + Dy(V)]
ol Tams] [T
+ (6.~ @ + B [ [ axu ]

Proof. Note that since H, H,, K, K, are regular, then so are y
and z. Thus according to [10; Corollary 2.1] the usual integration
by parts formula

X:f-dg + S:df-g = f-9 :
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holds. If to the terms z and y on the left the terms K*¢, + K¢
and H[Cy(0) + Dy(L)] + H are added and elsewhere subtracted,
several integration by parts results in

[, @) - @r1ae
=zyl+ ot | aky + o | dKy
+ {\ #amlwO + Dy + | *amy .

By using the formulas resulting from multiplying <‘é IB;> and

its inverse, the term z*y|; can be written in terms of end point
boundary conditions in z and y. An appropriate regrouping of
terms completes the proof.

We are now in a position to characterize the adjoint linear
relation L*.

THEOREM 3.2. The domain of the adjoint relation L* is Z*.
Further

L* = {(z, lT2): z€ o*}.

Proof. If ze <, then Green’s formula shows that (z, [z) € L*.
Hence

{(z, 1"2): 2e 2*}C L*.

To show the reverse inclusion, let y € & N Ci(0, 1), so that

0= g:de - —S:K(t)y’(t)dt ,

0= S:dKly = ——S KOy (Hdt .
Thus (v, ¥’ + Py)e L. If (z, 1*2) € dom L*, then

[y, 1*2] — [y + Py, 2] =0,

or

| (@2 - 2@ + Pylde = 0.

If the terms involving y are integrated by parts, this is equivalent
to

S {z + S [(*2) — P*z]ds}*y'dt =0.

t
0
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Since y vanishes at 0 and 1, ¥’ is orthogonal constants. From
comments above ¥’ is orthogonal to K(f)*. Thus for appropriate

C, ¢, 61
2+ S [(1*2) — P*2ldé = C — K(t)*é, — Ki(t)*s -
Hence
¢+ K*g + K¢ = —S [(*2) — P*2]dé + C

is absolutely continuous, and
I*z2 = —(z+ K*¢, + K*¢) + Pz =1""z.
Green’s formula now shows for arbitrary ye D
0= [C‘z(O) + Da(l) + S dH*z]* [Cy(0) + Dy(D)]
0
+ Hl dHl*z]*«/f
0

+ g — (A2(0) + Ez(l))[*uode:l .
Cy(0) + Dy(1) varies over C*™, for it not, a linear combination of
its rows would vanish, putting an extra constraint on =7. Likewise

it is clear from the definition of < that + varies over C°. Finally
if a linear combination of rows of K were constant, so then would

1
the same linear combination of components of X dKy be 0. Its

coefficient from ¢, — (42(0) + Bz(1)) would be arbigcrary. But then
the corresponding product within (z + K*[42(0) + Bz(1)] + K,¢) would
vanish. So effectively

G2(0) + Da(1) + S dH*z =0, SldHI*z ~0,

and
¢, = Az(0) + Bz(1) .
Hence dom L* = &,* [*z = l*z, and
L* = {(z, l2): z€ =%} .

This result is identical in form with that derived in [9]. Here,
however, because of greatly relaxed assumptions concerning H, H,,
K, K, linear relations prove to be a very convenient setting.

IV. Self-adjoint differential-boundary relations. In this sec-
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tion we restrict our attention to the Hilbert space X = <570, 1] and
characterize those linear relations which are self-adjoint. For con-
venience we replace L and L* by M and M*, given by

M = {(y, [1/illy + H[Cy(0) + Dy(1)] + Hy] + Qy): ye &}
and
M* = {(z, [1/illz + K*[A2(0) + Bz(1)] + K*2] + Q*z:z€ o)

where P = 1Q.
We say that the linear relation M is self-adjoint if M = M*.
Hence we find

THEOREM 4.1. The linear relation M s self-adjoint if and
only if
Q = Q.
m=mn, r=Ss.
K = [BD* — AC*|H*.
AA* = BB*.
H[CC* — DD*] =0 a.e.
K, = E . HY, where E, is a nonsingular r X r matriz.

S

Proof. It is clear that if all these conditions are satisfied, then
M= M*.

Conversely if M = M*, then

[1/:ly + H[Cy(0) + Dy(1)] + H)] + Qy
= [1/d]ly + K*[Ay(0) + By(1)] + K*¢] + Q*y .

If ye &7 vanishes near 0 and 1, is absolutely continuous (so + and
¢ may be chosen 0), but is otherwise free to vary, then Q*y = Qy
and @ = @*. From inspection m =% and » =s. Otherwise either
< or &* would have more boundary constraints than the other.
Further

Ay(0) + By(l) + gde =0, Sde =0
and
Cy(0) + Dy(1) + S;dHl*y ~0, g:dﬂl*y —0

must represent the same boundary conditions. This can only happen
if A=EC, B=ED, K= EH*, for some nonsingular matrix F and
K, = E.H* for some notsingular matrix F,. The equations which

result from multiplying (‘é g) and
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A B\™ (—Zx —C

¢ D/ \-B —5)
show that E = [BD* — AC*], as well as AA* = BB* and
H[CC* — DD*] = 0.

V. Self-adjoint operators on subspaces of %[0, 1]. Let the
columns of H, be suitably arranged such that the first s; of them
form a maximal independent absolutely continuous collection. Then
H, can be partitioned into H, = (H,: H,), where H, denotes the
absolutely continuous columns, and H, denotes those singular with
respect to Lebesgue measure. In X let 52 denote the subspace
spanned by the columns of H].

Likewise, let the rows of K, be suitably arranged so that the
first », form a maximal independent absolutely continuous collection.

Then K, can be partitioned into K, = <§°>, where K, denotes the

absolutely continuous rows, and K, denotes those singular with
respect to Lebesgue measure. In X* let .227* denote the subspace
spanned by the columns of KX'.

Now [ can be rewritten as follows: Let [, be defined by

liy = (y + H[Cy(0) + Dy(1)] + Hw.)' + Py .
Then
ly =1ly + H,

where 4 = ¥e). The boundary conditions determining <7 can also
Ps

be more accurately written as
4y© + By + | dky =0, [dKy=0, [ EKwat-o.
Q [} 0

Similarly I* can be written by first defining I} by
Itz = —(z + K*[A2(0) + Bz(1)] + K*¢.) + P*z.
Then
l+z = l:—z + Kc*’¢c )

where ¢ = @”) The boundary conditions determining <* can be

written as
G2(0) + Da(1) + S dH*2 =0, SldH,*z =0, g:Hc*’zdt =0.

We now face a rather odd situation. < is orthogonal to .977%,
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while ! is defined on D modulo 5#,. That is, for the subspace 97*!,
is uniquely defined only when set in 977*'/5Z.

Likewise &* is orthogonal to 5%, while [* is defined on &*
modulo 2#7*. That is, for the subspace 577, I™ is uniquely defined
only when set in £/ o77*.

This can be considerably simplified when X = $52[0,1], &£ =
2#7*, and the linear relation M is self-adjoint. The spaces above
are all reduced to SZ' or its isomorphic copy 0, 1]/54. We
assume without loss of generality that the columns of H, are
mutually orthonormal.

The restriction of M, denoted by M,, which defines an operator
from 27 to 27! is uniquely defined by

My = /)Ly + L) H!y. ,
where, with ( . ) denoting the inner product in <520, 1],
Vo = — <y, H)
Hence
My = (1/)ly — 1/ H lwy, H.) .

The relationships between M and M, can be best illustrated by
the following diagram:

Operator: M, Linear Space Homomorphism M,
Space: St Isometry L0, 11/54
Linear Space Isomorphism M Linear Relation M* (=M)
— —
0, 1] Z00, 1]

Linear Space Isomorphism M (:Ml)
=0, 1)/2
Linear Space Homomorphism M (=M)
Isometry e

It is readily apparent from the diagram that:

THEOREM 6.1. M, is a self-adjoint operator on the subspace 7]
if and only if M is a self-adjoint linear on &0, 1].

We note that the description of M, is equivalent to that derived
by Coddington [4], [5], [6] when Coddington’s » =1 and H, =0, H
is absolutely continuous. There certainly exists an extension of the
present work to higher order differential-boundary relations which
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will duplicate Coddington’s results in full generality, although at
the present time such work has not been done.
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