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It is well known in abstract quantum mechanics, that
when two observables have a joint distribution, a state can
be found, in which both observables have a small variance.
In order to consider a converse of this, a relation between
two observables is defined. Say x and y are two observables
and that when a is a state such that the variance of x in a
is small implies the variance of y in a will be small. From
the above relation it follows that there is a continuous function
/, such that / maps the spectrum of x onto the spectrum of
y. Further, y = f(x).

To make this notion clear, let us consider a commonly used
technique to observe natural phenomena accurately, namely, a statis-
tical ensemble, to which a sorting mechanism has been applied.

Say, for example, that observable A is of interest. Let a be
the property that a measurement of A is in E, a Borel subset of R.
Let / = χE, then the probability of a, in any state, is equal to the
probability of a yes answer to the question f(A). Hence, if we have
a subensemble which possesses property α, and if a is its state, then

Suppose one wishes to find accurate values for the observable
B at the same time (in the same state) we have knowledge of A.
One resolves the ensemble re A, then the subensemble which has
property a is resolved re B. However, in general, such a programm
will not work. This paper attempts to show that in the event such
a programm can be successfully carried through, it can be concluded
that A and B actually have a joint distribution.

Before beginning in earnest, we must establish some notation
and state an important formula.

The logic, g7, and the state set, @, with which we will work
have the following properties:

(1) They satifify Axioms I through VI and VIII of Mackey
(1963)—that is, all, but the Hubert Space Axiom. We will feel free
to use the structure and vocabulary developed by Mackey and also
to be found in Varadarajan (1962).

(2) Let α e g 7 and let us define a set, Sa as follows:

If a Φ 0, the above axioms assure us that Sa Φ 0. This axiom assures
us that if a, b e g7 and Sa <> Sb then a ^ δ.
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We write for the mean of an observable, x, in the state a,

μa(x) = \tdax(t)

and we write

α) - j(ί - μax)2dax

for the variance of x in the state a.
We recall that the Axiom III of Mackey deals with mixtures

of states. If a is a mixture, we write a = Σt^, where Σtt = 1,
tt > 0. We then have the following Variance Formula:

Let a = Σ?=i * A with ΣίU *< = 1 and ί, > 0. Then

Var β(s) = Jί, Var β<(a?) + Σ M ^ ) - μα>))2 .

The proof of this is straightforeward.
"Definition of x—+ y and a Proof of the Implied Existence of f"
Now, we want to return to the problem of simultaneously accurate

measurements. A system is in a state a, in which the measurement
of x is accurate, if the variance of x is small. Thus, we expect
with a probability of near 1, that a measurement of x will be near
μa(x). Then, in the context of a statistical ensemble Sn9 we let at

be the state of the subensemble, tSn, where we have Var a.(x) < d
and \μaix — t\ < S where teσ(x), the spectrum of x. Assume that
the small variance and the proximity of μa.(x) to t implies that
Var ai(y) < ε. We then would have that a resolution of the ensemble,
Sn, with respect to x is also a resolution with respect to y. We
will, with this view of the problem, proceed to the following

DEFINITION. Assume that x and y are observables. We will write
x —> y on σ(x)jN provided that the following conditions hold: There
is an OMIUII set, JV, (possibly empty) such that for each e > 0 and
each λ e σ(x)/N, there exists δλ > 0, such that whenever a is a state
for which

and

then

Var a(y) < ε .
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This definition has the interesting consequence that any two
observables so related, implies that there is a function / : σ(x)—+σ(y).
We will prove this as well as some of the function's interesting
properties.

PROPOSITION 1. Suppose x—*y and that {an} is a sequence of
states such that

lim μan(x) = X

for some X e σ(x). If

lim Var an(x) = 0

then μan(y) is a Cauchy sequence.

Proof. Use the variance formula on a mixture of states an and
am. Show that if Nis sufficiently large, n, m^Nimplies the variance
of x in the mixture is small. Thus, by x—*y, the variance of y in
the mixture is small. Thus, (recall that the terms of the Variance
Formula are all positive) \μa%(v) — ̂ am(v)\ ^ s.

PROPOSITION 2. Let x and y he observables with x—*y and let
N be an x-null set as in the definition of x—*y. Let Xe (x)/N and
assume that {an} and {βn} are sequences of states such that

lim μan(x) = lim μβjx) - \

and

lim Y2LTan(x) — lim Var^cc) = 0 ,

then

lim μajy) = lim μβ%(y) .

Proof. Consider a mixture of an and βm. Use the Variance
Formula on it and show that the variance of x in the mixture is
small when n and m are greater than N, and N is sufficiently
large. Also show that the mean of x in the mixture is near λ.
Thus, by x—*y, the varinace of y is small, from which it follows
that \μan(y)~ foJLv)\ ^ ε

PROPOSITION 3. Assume that x—+y and let {an} be a sequence
of states as in Proposition 2. Let 7 — lim μan{y)> then ^

Proof. For any ε > 0, consider Chebychev's inequality.
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«(!/)({* I I* ~ μAv)\ ^ e}) ̂  Var

Thus,

<x(v)(μa(v) ~ e/2, ft,(l/) + e/2) ̂  1 - 4 Var α(?/)/ε2 .

Further, if

a) \μa(y) - 7| < e/2, then

(i"«(l/) ~ e/2, μβ(y) + e/2) c (7 - e, 7 + ε)

Thus, we find a such that (a) holds and such that 4 Var a(y) < 1,
then, a(y)(μa(y) — ε, μa(y) + ε) Φ 0. Hence, for any ε > 0, we can
find a state a, such that α0/)(7 — ε, 7 + ε) Φ 0, which implies that
7 G

PROPOSITION 4. Sαi/ x—+y, on σ(x)/N. Then there exists a
function, / , such that

f: σ(x) > σ(y) .

Proof. Say λ e σ(x)/N. Then there exists {an} such that \imμan (x) =
λ and lim YSLT a%(x) = 0. We define /(λ) = lim μan{y). f is well
defined through Proposition 2. By Proposition 3, f(<τ(x)) c σ(τ/).

PROPOSITION 5. / i s continuous in the topology induced by the
usual topology on R.

Proof. Say λ e σ(x)/N and ε > 0. Then chose 5; > 0 corresponding
to ε2/36 in the definition of x~-+y. If λx G α"(x) such that |λj. — λ| < δλ/S,
find α and /3 states such that | μa(x) — λ | < δ /̂3, Varα x < δλ/2, and
such that I μa(y) — f(X) \ < e/3 and that the same relations hold with
respect to β and λlβ Thus the variance of x in any mixture of a
and β is less then δλ and further the average is with in δλ of λ.
Hence the variance of y in any mixture of the two is less than ε2/36.
Take a mixture of 1/2 of each and use the variance formula to show
I μ«(v) - μβ(v)\ < e/3. Then | /(λ) - fix,)] < ε follows.

Thus we have that the relation of Definition 1 implies the ex-
istence of a continuous function f:σ(x)/N—+σ(y). We will now
consider this relation in the case where x has a discrete spectrum.

"x > y Implies y = f(x)"

Assume that x is an arbitrary observable with a countable
spectrum. Let N be the set of all λ in the spectrum of x such
that x(X) = 0. N is thus x-null. Further, any other α>null set will
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be in N. We assume now that y is an observable such that x —>y
on σ(x)/N. We will show then that in this case, y = f(x).

LEMMA 1. If x and y are as above, X e σ(x) implies

χ(x) £

Proof. We have that λ e σ(x)/N implies that

x(X) Φ 0 in g7 .

Thus there is an a such that

a(x(X)) = 1

Therefore, Var a(x) = 0 and that x—>y, we have that Var a(y) = 0
and thus by Proposition 4 we have that μa(y) = /(λ). Now if a is
any state such that Var a(x) = 0 then Var a{y) = 0 and so

a(x(X)) = 1

implies

Therefore,

Hence,

THEOREM 1. Let x—*y as in Lemma 1, then

y - /(a?).

Proof. By Lemma 1, and the fact that x is a tf-homomorphism
we have

z(/-i(7)) = u {α(λ)|λe/-1('y)} ^ y(Ί)

for all 7 e σ(y).
Now both * and y are σ-homomorphisms, so we have

1 = U {a*/-ι(7)) 17 e (τ(2/)} ^ U {iv(Ύ) 17 e σ(y)} .

Further,

U {x(f~V)) 17 e o (i/)/7'} ̂  u {2/(7) 17 e <r(
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and thus,

x(f-\Ί>)) ^ y(Y) .

Thus we have shown:

V(y) ^ x{f~V)) ^ VW for all 7 e σ(y) .

Therefore,

V = fix)

We would clearly like to develop a theorem such as this for x
with a continuous spectrum. To consider this, a somewhat stronger
relation than x —* y will be defined. We will show that the stronger

relation, which we will write as x > y, is fully equivalent to the
equation y — fix), with / a continuous function in the induced topology
on R on the spectrum of x for an arbitrary observable x.

"x > y is Equivalent to y = f(x)"

We will begin this section with the definition of x • y.

DEFINITION. Assume that x and y are observables. We say

x > y iff there exists an cc-null set, N (possibly empty), such that

for every ε > 0 and λ e σ(x)/N there exists a δλ > 0 such that

a(x)(X - δλ, λ + δλ) ^ a(y)(μa(y) - e, μa{y) + e)

for every state a such that Var a(x) < δλ.

Intuitively x > y means that for an arbitrary error e > 0 there is
a tolerance δλ > 0 such that the probability that y is in the interval

(βa(y) - ε, μa(y) + e)

dominates the probability that x is in the interval

( λ -δλf\ + δx)

for any state a in which a? can be measured with accuracy δλ. That
is, if we measure x accurately, we can measure y accurately. This
will be shown in Proposition 6.

PROPOSITION 6. / / x and y are observables and if \\y\\ exists,

then x > y implies x—+y.

Proof. Let ε > 0 and λ e σ(x)/N where N is the #-null set in
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the definition of x > y. We show that x > y on σ(x)/N. Now

there exists δz > 0 such that

a(x){X - δλ, λ + δλ) ^ a(y)(μa(y) - ε, μa(y) + ε)

for every state a for which Var a(x) < δ ; .

For any state a such that Varα(#) < δXf we have

Var β(i/)

= f ,_ JP ~ μ«(y))2da(y)(v)

+ \ (v - μM)2da(y)(v)

^ ea(y)(μa(y) - V 7 ^ ^(^/) + l / T )

On the other hand, Chebyshev's inequality implies that

δxa(x)({v I |v - λ | > δλ}) ^

and thus that

Now if we let δ'λ = min{^, δ2ε/(4|]τ/||2)}, then δ[ > 0 and for any state
a for which Var α(cc) < δ'λ we see that

It follows that x—+y.

PROPOSITION 7. Lβί α; δβ an observable and f: σ(x)—+R a bounded
function which is continuous on the complement of an x-null set.
Then

x -^-> f(χ) .

Proof. Let N denote the set of discontinuties of / and M —
swpteaix)iN I/(*) I F° Γ e a c h £ > 0 and Xeσ(x)/N there exists δ ; > 0
such that 11 — λ | < δλ implies

It a is any state, we have by Chebyshev's inequality
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μa(f(x)) - /(λ)| - I \f(t)da(x)(t) - \f(X)da(x)(t)

£\\f(t)-f(\)\da(x)(t)

^ e/3 + 2Ma(x)({t | |λ - ί| > 8,})

^ε/3 + 2ikfVarα(z )/(8,2).

Now let δ'λ = min {δλ, δ
2

λe/(6M)}. If a is a state such that Var a(x) <
8J, then

2ilf/(«»Varβ(a0<e/3

and |^(/W)
Let C = σ(x)/N and y — f(x), then

(λ - 85, X + 80 n C c Π / ( λ ) - e/3, /(λ) + β/3)

c f^iμJy) - e, A««(») + £)

and

a?(λ - «5, λ + 80 - x((X - 8J, λ + 80 n C)

^ xif-'teJLv) - e, /ίβ(») + e))
= f(v)(βa(v) - ε, juβ(i/) + ε).

Thus,

a(x)(X - 85, λ + 85) ^ a(y)(μa(y) - ε, ̂ (7/) + ε)

hence

x >y .

PROPOSITION 8. Let x and y be observables such that x—+y and
let

f: σ{x) • σ(y)

be the map defined by Proposition 4. If e > 0 and λ 6 σ(x)/N9 then
there exists δλ > 0 such that

x(X -δλ,X + δλ) ̂  y(f(X) - ε, /(λ) + ε) .

Proof. Observe fist that the map

/ : σ(x) > σ(y)

exists. Since x > y implies x • y, we have by Proposition 4 the
existence of / . Also we know that / is continuous on σ(x)/N. Let
ε > 0 be given. Say that λ e σ{x). By the definition of / there
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exists δ'λ > 0 such that if a is a state such that

\μa(χ)-M <δ'λ

and

V*ra(x)<δ'λ

then

Moreover, since x > y, there exists δ" > 0 such that

a(x)(X - δ'λ', X + δ'λ') ^ a(y)(βa(y) - ε/2, μa(y) + ε/2)

for every state a for which Var a(x) < δ". Let

δλ=l/4min[δ'λ',δ'λ, 1 ] .

We intend to show that

α?(λ - δλ, λ + δ,) ^ y(/(λ) - ε, /(λ) + ε)

by showing that for every state a for which

α(s)(λ - SJ, λ + δ,) - 1

if follows that

a{y){f{X) - ε, /(λ) + ε) - 1 .

The desired conclusion will then follow.
This is easy; if a is a state such that

a(x)(X - δλ X + δλ) = 1

then we see t h a t

Var α (#) < 4δ ; and \μa(x) - X\< δλ

and

1 - a(x)(X -δλ,X + δλ) £ a(y)(μa(y) - ε/2, μa(y) + ε/2)

^ α(y)(/(λ) - ε, /(λ) + ε) .

Thus the proposition follows.

PROPOSITION 9. Let x and y be observables such that x > y.
Then there is a function

f: σ(x) > σ(y)
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which is continuous on the complement of some x-null set and which
has the property that y = f(x).

Proof. Let

/ : σ(x) > σ(y)

be the function defined by Proposition 4.
We first show that

x(f~\E)) ^ y(E)

for any open set E. For Ύ e E choose εr > 0 such that

(7 - εr, 7 + er) S E.

If C denotes the set of points of σ(x) at which / is continuous then,
for each

λ e /"1(7 - εr, 7 + er) n C

there exists δλ > 0 such that

( λ _ sλ9 λ + δ,) n σ(x) s /~1(7 - εr, 7 + er) .

By use of Proposition 8 we see that we can assure that

x(X -δλ,X + δλ) ^ y(f(\) - dx, / ( λ ) + dx)

where

dλ - min [|/(λ) - (7 - εr)|, |/(λ) - (7 + er)|] .

But

(/(λ) - dλ, /(λ) + dλ) c (7 - εr, 7 + er)

and thus

α?(λ - δλ, λ + δ,) ^ y(f(\) - d,, /(λ) + dλ) ^ y(7 - eΓ, 7 + er)

Now

/- ι(7 - er, 7 + er) Π C
S U {(λ - 8U λ + δ a) |λe/- χ(7 - sr, 7 + er) n

and thus there exists a sequence {λj in

f - % Ί - εr, 7 + εr) Π C

such that
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f ~ \ Ί - εr, 7 + er) Π C c y (λ, - 8iv \ + δx.)

(recall that a subspace of a separable space is separable). Thus,

x(f~V ~ % Ύ + er)) = α*/" 1^ - εr, 7 + εr) n C)

^ U Φ i - δlv λ, + δλi)

^ y(E).

Now E is seperable and

E = U (Ύ - erι 7 + εr) ,

thus there exists a sequence {Yj in J57 such that

E = \J(Ύt- εu, Ί, + εr.) .

Then

and

y /-ιCy€ - εr., 7, + εr.))

-V* - εr,, % + er.)

It follows that x{f~\E)) ^ ^ ( ^ for every open set E. Now let
ae E. We will show that

x{f-\a)) S y({a}) .

If

λ e f-ι(a) Π C

then by Proposition 8 there exists δλ > 0 such that

#(λ — δλ, λ + λΛ) ^ y((a — ε, α + ε)) .

Since /"^α) Π C is separable, there is a sequence {λjf=1 in /"^α) Π C
such that

/^(α) Π C c ψ (λ, - δXi, \< + δ,.) .

Thus,

χ(f~\a)) - αί/^ία) + C) ̂  U a<\ - δ2<, λ4 + ί2<)

^ 2/(α — ε, a + ε) .



158 TOM LOUTON

Now

x{f~\a)) ^y(a- s,a + ε)

for arbitrary e thus

x(f^(a)) ^ f l ί / ( α - 1/n, a + 1/n) =
Λ = l

Finally, let £7 = (α, 6) be any open interval. Thus

Ec = (-oo,α) U {α} U{δ}U(δ, +oo)

and if

ϊ7=(-oo,α)U(δ f +oo)

then U is open and

and further

x{f-\a)) S V(a)

If follows that

x(r\Ec)) = x{f~\U) U f-\a) U Π

U ̂ (Z-1^)) U x(f-ιφ))

= y(Ec) .

Thus

y(Ecγ ^ χ(f

and

y(E) <ί x(Γ\E))

for every open interval E. Clearly

y(E) = x{f~\E))

for any open interval (finite or not) by a minor modification of the
above argument. Since every open set is a disjoint union of open
intervals

y(E) = x(f~\E))

for every open set E.
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To complete the proof of the proposition, observe that the collection

A = {BeB(R)\y(B) = xif

is easily shown to be a σ algebra which contains all open sets. Since
B{R) is the smallest such σ algebra we have that A — B(R) and thus
that

y(B) = x(f-\B))

for every Borel set B.
We now present the following theorem as a synopsis.

THEOREM. Let x and y be observables. Let

f: σ(x) > σ(y)

be the naturaly induced mapping when x—*y.
(1) f is continuous on the complement of an x-null set,

Q

(2 ) the relation x > y is equivalent to the functional calculus
equation y = f{x),

Q

( 3) the relation x > y implies x—>y, and
( 4) if x has a countable spectrum and x~+y on the complement

of N = {λ I x(X) = 0}, then y = f(x), i.e., x—*y is equivalent to x > y.

Finally we note that we do not know, in general, whether or not
x—*y implies y — f(x), but we rather suspect that this is not so.
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