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y'(@t) = F(t, y(g(5))

MuURIL L. ROBERTSON

A procedure is given, which is parameterized by a certain
set of real-valued functions, that yields sufficient conditions
on each of g and F' to guarantee a solution to y/(t)=F(,y(9(t))).

The following is the main result.

THEOREM 1. Suppose that f is a real-valued continuous function
with connected domain J of real numbers so that

(1) 0edJ and f(0) >0

(2) f 48 increasing on J N[0, + o)

(8) f s decreasing on J N (— oo, 0]

(4) 0< k<1, if the range of f is unbounded; and k=1 if
the range of f is bounded

(5) B 4s a Banach space, F:J x B—B, and N:J— R

(6) F s continuous and there is a constant C so that

126, 0)l1ds| = €@, for all @ in .

(7) IFE¢ o) — F@&, vl < N || — yl|, for ted and x,ye B
(8) N 4s positive and Lebesgue integrable or subintervals of J
(9) g is any continuous function from J into J so that g(x) €
SO, k| fo=(x)|/N(x)] for all xeJ. (f"'#** denotes the right-hand
derivative if >0 and it denotes the left-hand derivative if x <0.)
(10) geB.
Then, there is a unique function y:J — B so that y'(t) = F(, y(g(t))),
¥(0) = q and ||y(t)|] £ Constant- f(¢), for all ¢t in J.

LEMMA. If f satisfies conditions (1), (2), and (3) in the statement
of Theorem 1, then g freiem(s) ds exists in the Lebesgue semse and s
0
less than or equal to f(x) — f(0), for each xelJ.

Proof of Lemma. Supposex > 0. Let f,(8) = [f(s + 1/n) — f(s)]n.
Then f'*(s) = lim f,(s) for almost all s > 0. C(learly each f, is
summable, because each f, is continuous. Also, for each »

J,£u0 = [\l (s + =) = 7@ Jis
—n Sl“ f(s)ds — m SO f(s)ds
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z+1[n 1fn
=n g f(s)ds — n S f(s)ds (which approaches
T 0

S (x) — £(0))
< 2.{sup of f on [0,z + 1]}

Thus, by Fatou’s lemma [see 3, page 39], f'* is summable on [0, ]
for all x > 0 and zeJ and

| r@ds = timint | 7.9 = £@) — £0) .
The proof is similar for x < 0.

Proof of Theorem 1. Let ||| be the norm of B and define |- |
to be the norm defined by |z| = sup {||2(x)||/f (x): x € J} for each z con-
tinuous from J into B such that this supremum exists. Let Y denote
the Banach space of all such 2z, with norm |.|. For each ze Y

and ze€J, let (T?)(x) = q + SmF(s, 2(g9(s)))ds. Supposez, we Y. Then

1(Ta@) — (Tw)@ = ||| 176, 206) — Fis, wg@)ds]
= ||| ¥@ 120065 — wlote) 15|
= || ¥ rEs]12 - wl.

Thus, |Tz — Tw| < sup {HxN(s)f(g(s))ds[/f(x)} |z — w|. The following
0
shows that T is a contraction.

Case 1. Suppose 2 >0. Then if 0=<s =< f(g(s)e[f(0),
BN Thus, |7 NG F@@)ds| = | N £@@)ds < | rreds =
k(f(x) — f(0)), by the lemma.

Case 2. Suppose ¢ < 0. Then if

x=<s=0, f(g(s) € [f(0), —kf"(s)/N(s)] .
Thus,

| Mo 7 @ends| = | Mo s a@)d sk | F-0)ds < br@ - £O)

by the lemma.

Thus, in either case ¢ = sup HS:N(x)f(g(s))dsl / f@)} < sup k(1 ~
F©)/f(@®)}. So, if the range of f is unbounded, ¢ <k and if the
range of f is bounded by L and k=1, then ¢<1— f(0)/L. So T
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has contraction constant ¢. The zero funection Z is in Y, because
(TZ)x) =q + SOF(S, 0)ds and |[(TZ)@)|l/f (@) < [llgll + Cf@)]/f(@) <
lqll/f(0) + C. Now if weY, |[(Tw)@)||/f(x) <|Tw— TZ|+ |TZ].

Thus Twe Y. So, by Banach’s contraction mapping principle, 7T
has a unique fixed point in Y. This proves Theorem 1.

REMARKS. (1) Given any g one may find an appropriate N and
apply Theorem 1, by requiring N(x) < k| f™'¢**(x)|/f (g(x)).

(2) At any particular x, there is an f so that f’s's*(z) =
and so that ¢ does not have infinite derivative in a deleted neighbor-
hood of 2. For this type f, g(x) could be any number.

In [5], Siu essentially uses the method of Theorem 1 with f(x) =
exp (|z{/e) to obtain:

THEOREM 2 (Siu). If |g()| £ |z] + ¢, where 0 < ¢ < 1/e, for all
real numbers x, then y = y(g), y(0) = q has unique solution subject
to ||ly(@)]] < constant-exp (|z|/e)

In [4], the author proves:

THEOREM 3. If {I(1)} is a sequence of intervals so that I(0) =
{0} € I(7) € I(Z + 1), I(?) = [a(3), b(3)], and max {a(i — 1) — a(t), b(z) —
b(t — 1)} <1 for each positive integer i; then y' = y(g), y(0) = q has
unique solution on U{I(7)}, whenever g is countinuous and g(I(%))SI(1)
for each positive integer 1.

The following theorem is comparable to each of Theorem 2 and
Theorem 3.

THEOREM 4. Suppose the hypothesis of Theorem 3 holds and k
is i (0, 1) such that max{a(t — 1) — a(®), b(z) — b( — 1)} < k for each
positive integer ©. Then, for each positive integer 1, there exists
0() > 0 such that if g is a continuous function from U {I(%)} into
U{IR)} such that 9(I(7)) & [a(t) — 0(2), b(3) + 6(¢)], then ¥'(t) = F(t,
y(g @), y(0) = q has a solution on U {I(%)} for any F such that N =
1, where F and N salisfy the conditions listed for them in the
hypothesis of Theorem 1.

Proof of Theorem 4. Let f be a positive continuous piecewise
linear function with domain U {I(7)} such that f has slope M(i) or
(B( — 1), b(2))) and slope —M(%) on (a(é), a(¢ — 1)) where the sequence
{M(%)} is chosen such that for each nonnegative integer =,
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M + 1)
> max {| 70) + 3 M@)(a(i — ) - a(@) | /1 — @) - ate + D)1,
(O + 3 MA@ — b6~ 1) | [ 1k — @0+ D) — b} -
Let
5m+n=mmpm+n—am+mmm+m—un+D,
[mmn+D—[ﬂm+gﬁmmwwan—amﬂ/Mm+zp
@Mw+n—p@+ngW@—m—ngVMm+my
It follows that the hypotheses of Theorem 1 hold.

REMARK. The solution in Theorem 4 is unique in the Banach
space Y of Theorem 1, which depends on f.
The following is a straightforward application of Theorem 1.

THEOREM 5. Suppose

(1) 1< -k<a<0<b<k<1
(2) m = max {1/(k + a), 1/(k — b)}
(3) nk = max {(1 — ma)/(1 + mb), (1 + md)(1 — ma)}
x — (log nk)/n y T=Za
(4) l(x) = {a — (log km/(1 — ma))/n ,y a<x<b
—2+ a+ b — (logkn(mb + 1)/(1 — ma))/n, b=z
and
—x 4+ a + b+ (log nk/(L — ma)/(L + mb))/n, z=a
u(x) = {b + (log km/(1 + mb))/n , a<2<b
x + (log nk)/n , b=
(5) l<g=<u and g is continuous .

Then, there is a unique solution to ¥'(t) = F(, y(9(t))), y(0) = q
where F' and N satisfy the hypotheses of Theorem 1, N =1 and,
[|ly(x)|| < constant. f(x), for all real numbers x, where

1 —ma)exp(—nx—a), z=a
1— mx , a0
1+ mx , 0Zz<b
(mb+ ) expn(x—2>) , b=

fl@) =
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REMARK. If ¢ = —b, then u = —I.

The following is a generalization of a theorem by D. R. Anderson

[1].

COROLLARY TO THEOREM 5. Suppose 0< 8 <1,¢ >0, and

——x+l—s r=-—2
€

lg(@)| = B+<log%)/e~e —B<x <R

x4+ 1_ € B=x.
e
Then, there is a solution to y'(t) = F(t, y(g(t))), y(0) = q for N=1
any y subject to ||y(x)]] < constant. f(x) for an appropriate f.

Proof. Straightforward.

REMARK. As B approaches 0, g is allowed to become indefinitely
large at 0.

The author wishes to thank Professor Bob Dorroh for his help
with the lemma to Theorem 1.
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