Pacific Journal of Mathematics

A CLASS OF SYMMETRIC DIFFERENTIAL OPERATORS WITH DEFICIENCY INDICES (1, 1)

ARNOLD LEWIS VILLONE

Vol. 59, No. 1

May 1975

A CLASS OF SYMMETRIC DIFFERENTIAL OPERATORS WITH DEFICIENCY INDICES (1, 1)

A. VILLONE

Let \mathscr{H} denote the Hilbert space of analytic functions on the unit disk which are square summable with respect to the usual area measure. In this paper we show that every symmetric differential operator of order two or more having the form $L = \sum_{i=0}^{n} (a_{i+1}(i)z^{i+1} + a_{i-1}(i)z^{i-1})D^i, a_{-1}(0) = 0$, has defect indices (1, 1) and hence has self-adjont extensions in \mathscr{H} . We are also able to show that L + M has defect indices (1, 1) where M is a symmetric Euler operator of order n - 1, M = $\sum_{i=0}^{n-1} b_i z^i D^i$, provided that $|b_{n-1}| < (n-1) |a_{n+1}(n)|$.

In what follows \mathscr{H} denotes the square summable analytic functions in |z| < 1, with inner product $(f, g) = \iint_{|z|<1} f(z)\overline{g(z)}dxdy$. A complete orthonormal set for \mathscr{H} is provided by the functions $\phi_n(z) =$ $((n+1)/\pi)^{1/2}z^n$, $n = 0, 1, \dots$, from which it follows that $\sum_{n=0}^{\infty} a_n z^n$ represents an element of \mathscr{H} if and only if $\sum_{n=0}^{\infty} |a_n|^2/(n+1)$ converges. The formal differential operator $L = \sum_{i=0}^{n} p_i D^i$, $p_i \in \mathscr{H}$, is said to be formally symmetric if $L\phi_n \in \mathscr{H}$ for all n and $(L\phi_n, \phi_m) = (\phi_n, L\phi_m)$. Let $T_0f = Lf$ for f in the span of the ϕ_n . Then the closure of T_0 , S, is a symmetric operator and its defect indices $m^+(m^-)$ are just the number of linearly independent solutions of $L\phi = \lambda^+\phi(L\phi = \lambda^-\phi)$ in \mathscr{H} , where Im $(\lambda^+) > 0$ (Im $(\lambda^-) < 0$). [2]

It is known, [1], that if L is an *n*th order formally symmetric operator then the p_i are polynomials of degree at most n + i, $p_i(z) = \sum_{k=0}^{n+1} a_k(i)z^k$, where the $a_k(i)$ satisfy the following linear systems for $p = 0, 1, \dots, n$

(1)
$$S_p: \sum_{k=0}^n a_{k+p}(k)B(i, k) = \sum_{k=p}^n \overline{a}_{k-p}(k)B(i+p, k)A^2(i+p, i)$$
$$i = 0, 1, 2, \cdots$$

Where,

$$A(i, j) = [(i + 1)/(j + 1)]^{1/2}$$

(2)

$$B(i, j) = i!/(i - j)! \ i \ge j \ = 0 \qquad i < j \ .$$

Setting $a_{k+p}(k) = a_{k-p}(k) = 0$ for $p \neq 1$, L has the form

$$(3) \qquad \sum_{i=0}^{n} (a_{i+1}(i)z^{i+1} + a_{i-1}(i)z^{i-1})D^{i}, \qquad a_{-1}(0) = 0.$$

In this paper we show that such L's give rise to operators with defect indices (1, 1). Before doing so it is necessary to determine the nature of the relationships among the $a_{i\pm 1}(i)$ implied by S_1 .

LEMMA. The
$$a_{i\pm 1}(i)$$
 satisfy S_1 if and only if
(4)
 $a_{i+1}(i) = (i+2)\overline{a}_i(i+1) + \overline{a}_{i-1}(i)$ $i = 0, 1, \dots, n$,
 $a_{-1}(0) = a_n(n+1) = 0$.

Proof. The proof hinges on the algorithm provided by Theorem 2.3 of [1] which states that the system S_p is satisfied if and only if

(5)
$$j! a_{j+p}(j) = R_0^j$$
 $j = 0, 1, \dots, n$,

where $R_i^0 = \sum_{k=p}^n \bar{a}_{k-p}(k)B(i+p,k)A^2(i+p,i)$, and the R_i^j are defined recurrively by

(6)
$$R_i^j = R_{i+1}^{j-1} - R_i^{j-1}$$
.

For p = 1, $R_i^0 = \sum_{k=1}^n \overline{a}_{k-1}(k)((i+2)i!)/(i+1-k)!$, where we agree to set the terms involving i + 1 - k < 0 equal to 0. Setting i = 0, (5) becomes

$$a_{\scriptscriptstyle 1}(0) = \sum\limits_{k=1}^n ar{a}_{_{k-1}}(k) 2/(1-k)! = 2ar{a}_{\scriptscriptstyle 0}(1)$$
 .

We now show that for $j \ge 1$ R_i^j is given by

(7)
$$R_i^j = \sum_{k=1}^n \bar{a}_{k-1}(k)[i!/(i+j+1-k)!](ik+2k-j)P_j(k)$$
,

where

$$P_{\scriptscriptstyle 1}(k)=1$$
 and $P_{\scriptscriptstyle j}(k)=(k-1)\cdots(k-j+1)$, $j>1$,

and

$$[i!/(i+j+1-k)!]=0$$
 , $i+j+1-k<0$.

A simple calculation yields

$$R^{\scriptscriptstyle 1}_i=\,R^{\scriptscriptstyle 0}_{i+1}-\,R^{\scriptscriptstyle 0}_i=\sum\limits_{k=1}^n ar{a}_{k-1}(k)[i!/(i\,+\,2\,-\,k)!](ik\,+\,2k\,-\,1)$$
 ,

so that (7) holds for j = 1. Assumming that (7) holds for j we obtain

$$R_i^{j+1} = \sum_{k=1}^n ar{a}_{k-1}(k) [i!/(i+j+2-k)!] P_j(k) Q$$
 ,

where

$$Q = (i + 1)(ik + 3k - j) - (i + j + 2 - k)(ik + 2k - j)$$

= (ik + 2k - j - 1)(k - j).

Hence we have $R_i^{j+1} = \sum_{k=1}^n \bar{a}_{k-1}(k)[i!/(i+j+2-k)!](ik+2k-j-1)P_{j+1}(k)$. For j = n, (5) and (7) yield

$$n! a_{n+1}(n) = \sum_{k=1}^{n} \bar{a}_{k-1}(k)(2k-n)P_n(k)/(n+1-k)!$$

Since $P_n(k) = 0$ for $k = 1, \dots, n-1$, the series reduces to $\bar{a}_{n-1}(n)[n(n-1)\cdots 1]$, from which it follows that $a_{n+1}(n) = \bar{a}_{n-1}(n)$. For $1 \leq j < n$, (5) and (7) yield

$$egin{aligned} j! \, a_{j+1}(j) &= \sum\limits_{k=1}^n ar{a}_{k-1}(k)(2k-j)P_j(k)/(j+1-k)! \ &= \sum\limits_{k=j}^n ar{a}_{k-1}(k)(2k-j)P_j(k)/(j+1-k)! \;, \end{aligned}$$

since $P_j(k) = 0$ for $k = 1, \dots j - 1$. On the other hand, the terms for j + 1 - k < 0 vanish leaving us with

$$j! a_{j_{i+1}}(j) = ar{a}_{j_{i-1}}(j) j P_j(j) + ar{a}_j(j+1)(j+2) P_j(j+1) \; .$$

Since $P_{j}(j) = (j - 1)!$ and $P_{j}(j + 1) = j!$, we have

$$a_{j+1}(j) = \bar{a}_{j-1}(j) + (j+2)\bar{a}_j(j+1)$$
.

THEOREM. Let L be the operator of (3) then S has defect indices $m^+ = m^- = 1$.

Proof. The idea of the proof is to show that the equation $L\phi = \lambda\phi(\operatorname{Im} \lambda \neq 0)$ has exactly one power series solution $\phi(z) = \sum_{j=0}^{\infty} \alpha_j z^j$ and that $|\alpha_j|$ is $\bigcirc (j^{-1/p})$ for some positive integer p. This implies that $\sum_{j=0}^{\infty} |\alpha_j|^2/(j+1)$ converges and $\phi \in \mathscr{H}$, thus $m^+ = m^- = 1$.

Let $\phi(z) = \sum_{j=0}^{\infty} \alpha_j z^j$ be a formal power series solution of $L\phi = \lambda \phi$. Substituting this series into $L\phi = \lambda \phi$ we obtain

$$L \phi(z) = \sum\limits_{j=0}^\infty \left[lpha_j C_j z^{j+1} + lpha_j D_j z^{j-1}
ight] = \sum\limits_{j=0}^\infty \lambda lpha_j z^j$$
 ,

where

$$(\,8\,) \ C_{j} = \sum_{i=0}^{n} a_{i+1}(i) \pi_{i}(j) \ D_{j} = \sum_{i=1}^{n} a_{i-1}(i) \pi_{i}(j) \ D_{j}$$

and

$$egin{aligned} &\pi_{\scriptscriptstyle 0}(x) = 1 \ &\pi_{\scriptscriptstyle i}(x) = x(x-1) \cdots (x-i+1) \ &i=1,\,2,\,\cdots,\,n \;. \end{aligned}$$

Since D_0 vanishes, we have

(9)
$$\alpha_1 D_1 + \sum_{j=1}^{\infty} (\alpha_{j+1} D_{j+1} + \alpha_{j-1} C_{j-1}) z^j = \sum_{j=0}^{\infty} \lambda \alpha_j z^j$$
,

whence

(10)
$$\begin{aligned} \alpha_1 D_1 &= \lambda \alpha_0 \quad (\operatorname{Im} \lambda \neq 0) \\ \alpha_{j+1} D_{j+1} + \alpha_{j-1} C_{j-1} &= \lambda \alpha_j \qquad \qquad j = 1, 2, \cdots . \end{aligned}$$

If $D_1 \neq 0$ we have $\alpha_1 = \lambda \alpha_0/D_1$ and (10) can be solved recurrively for $\alpha_2, \alpha_3, \cdots$, in terms of α_0 , provided that D_j never vanishes for $j = 2, 3, \cdots$. Thus we have the single formal power series solution $\phi(z) = 1 + \alpha_1 z + \alpha_2 z^2 + \cdots$. If $D_1 = 0$, let ρ be the smallest positive integer for which $D_{\rho} \neq 0$, then $\alpha_j = 0$ for $j < \rho - 1$ and $\alpha_{\rho} = \lambda \alpha_{\rho-1}/D_{\rho}$, and (10) can be solved recurrively for $\alpha_{\rho+1}, \alpha_{\rho+2}, \cdots$, in terms of $\alpha_{\rho-1}$, provided that D_j never vanishes for $j > \rho$. In this case we have the single formal power series solution $\phi(z) = z^{\rho-1} + \alpha_{\rho} z^{\rho} + \cdots$. The case when D_j vanishes for some $j > \rho$ presents some complications and will be considered later in the proof.

It is not difficult to see that D_1 thru D_n are not all zero. From (8) we have

$$egin{array}{lll} D_1 &= a_0(1) \ D_2 &= a_0(1) \pi_1(2) + a_1(2) \pi_2(2) \ dots \ D_n &= a_0(1) \pi_1(n) + \, \cdots \, + \, a_{n-1}(n) \pi_n(n) \end{array}$$

Since the $\pi_i(j) \neq 0$ for $i \leq j = 1, 2, \dots, n$, it follows that $\underline{D}_1 = \dots = D_n = 0$ implies $a_0(1) = a_1(2) = \dots = a_{n-1}(n) = 0$. But $a_{n+1}(n) = \overline{a_{n-1}(n)} = 0$, (4), contradicting the fact that L is of order n.

Suppose then that D_{ρ} , $1 \leq \rho \leq n$, is the first nonvanishing D_j and that $D_j \neq 0$ for $j > \rho$. We then have at most one analytic solution of the form $\phi(z) = z^{\rho-1} + \alpha_{\rho} z^{\rho} + \cdots$.

Solving (10) for α_{j+1} and estimating we obtain

(11)
$$|\alpha_{j+1}| \leq \left|\frac{\lambda}{D_{j+1}}\right| |\alpha_j| + \left|\frac{C_{j-1}}{D_{j+1}}\right| |\alpha_{j-1}|.$$

We now estimate the coefficients of $|\alpha_j|$ and $|\alpha_{j-1}|$ for large j. To do this we first investigate the nature of C_{j-1} and D_{j+1} as polynomials in j.

From (8) and the fact that $\pi_k(x) = x^k - k/2(k-1)x^{k-1} + \cdots$, it follows that D_{j+1} is a polynomial in j of degree n,

(12)
$$D_{j+1} = a_{n-1}(n)j^n + [a_{n-1}(n)\{n - (n-1)n/2\} + a_{n-2}(n-1)]j^{n-1} + \text{lower powers of } j$$
.

Similarly,

(13)
$$C_{j-1} = a_{n+1}(n)j^n + [a_{n+1}(n)\{-n - (n-1)n/2\} + a_n(n-1)]j^{n-1} + \text{lower powers of } j.$$

From the lemma we know that $\bar{a}_{n-1}(n) = a_{n+1}(n)$ and that

$$a_n(n-1) = \overline{a}_{n-2}(n-1) + (n+1)\overline{a}_{n-1}(n)$$

= $\overline{a}_{n-2}(n-1) + (n+1)a_{n+1}(n)$.

Hence, (12) and (13) become

(14)
$$D_{j+1} = \bar{a}_{n+1}(n)j^n + [\bar{a}_{n+1}(n)\{n - (n-1)n/2\} + a_{n-2}(n-1)]j^{n-1} + \cdots$$

(15)
$$C_{j-1} = a_{n+1}(n)j^n + [a_{n+1}(n)\{1 - (n-1)n/2\} + \bar{a}_{n-2}(n-1)]j^{n-1} + \cdots$$

Thus we obtain, for $j > \rho$,

(16)
$$\frac{C_{j-i}}{D_{j+1}} = \omega \theta(j) = \omega \frac{j^n + [(\varDelta + 1) + \theta] j^{n-1} + \cdots}{j^n + [(\varDelta + n) + \theta] j^{n-1} + \cdots},$$

where $|\omega| = 1$, $\Delta = -(n-1)n/2 < 0$, $\theta = \bar{a}_{n-2}(n-1)/a_{n+1}(n)$.

Concerning $|\theta(j)|$ we obtain, upon dividing,

$$heta(j) = 1 - rac{n-1}{j} + irac{2\operatorname{Im}{(heta)}}{j} + \bigcirc (j^{-2})$$

Thus $|\theta(j)|^2 = 1 - (2(n-1))/j + \bigcirc (j^{-2})$, from which it follows that

$$|C_{j-1}/D_{j+1}| = 1 - rac{(n-1)}{j} + \bigcirc (j^{-2})$$
 .

For $\xi > 0$ we note that $|C_{j-1}/D_{j+1}| \leq 1 - \xi j^{-1}$ for j sufficiently large if and only if $-(n-1) < -\xi$, or $\xi < n-1$. Hence we have

(17)
$$|C_{j-1}/D_{j+1}| \leq 1 - \frac{\xi}{j}$$
, for j sufficiently large and $0 < \xi < n-1$.

Using (11), (17) and the fact that $|D_{j+1}^{-1}|$ is $\bigcirc (j^{-n})$ we have, for j sufficiently large,

(18)
$$|\alpha_{j+1}| \leq (1 - \gamma j^{-1}) \max\{|\alpha_j|, |\alpha_{j-1}|\},$$

where $0 < \gamma < \xi < n-1$.

Using the arguments given in [3], p 3-4 it follows from (18), that there exists a K > 0 and a positive integer p such that $|\alpha_j| \leq 1$

 $Kj^{-1/p}$ for j sufficiently large. Hence $\sum_{j=0}^{\infty} |\alpha_j|^2/(j+1)$ converges and $\phi \in \mathscr{H}$. To complete the proof we have only to deal with the case where D_j vanishes for some $j > \rho$.

Suppose $D_k = 0$ for some integer $k > \rho$. Since D_j is a polynomial in j of degree n, there is a largest integer k such that $D_k = 0$. The power series solution $\hat{\phi}$ obtained from (10) by taking $\alpha_j = 0$, $j = 0, 1, \dots, k - 1$, and solving recursively for $\alpha_j, j > k$, in terms of α_k is, as we have seen, in \mathscr{H} . If there are other power series solutions for which all the $\alpha_j, j = 0, \dots, k - 1$, are not zero, these solutions would be in \mathscr{H} as well, hence $m_+(m_-) \ge 2$. We now show that this is not the case by demonstrating the existence of λ , Im $(\lambda) \neq 0$, for which $\hat{\phi}$ is the only power series solution possible.

If $D_k = 0$, we obtain the following homogeneous system of equations in $\alpha_0, \alpha_1, \dots, \alpha_{k-1}$.

(19)
$$\begin{aligned} & -\lambda lpha_{_0} - D_{_1} lpha_{_1} = 0 \\ & C_{_{j-1}} lpha_{_{j-1}} - \lambda lpha_{_j} + D_{_{j+1}} lpha_{_{j+1}} = 0 \\ & C_{_{k-2}} lpha_{_{k-2}} - \lambda lpha_{_{k-1}} = 0 \end{aligned} \qquad j = 1, 2, \cdots, k-2$$

For the system determinant we have $\Delta_k(\lambda) = (-1)^k \lambda^k + \cdots$, and hence $\Delta_k(\lambda)$ vanishes at only a finite number of points in the complex plane. Thus we can find λ , Im $(\lambda) \neq 0$, for which $\Delta_k(\lambda) \neq 0$, which implies that $\alpha_0 = \cdots = \alpha_{k-1} = 0$. Hence there is only one analytic solution of $L\phi = \lambda\phi$, namely $\hat{\phi}$.

The defect indices of S are not changed if we add to L the formally symmetric Euler operator M of order n-1, provided the leading coefficient of M is not too large. The proof of this follows directly from the proof of the theorem. Let $M = \sum_{i=0}^{n-1} b_i z^i D^i$, b_i real, and take $L_1 = L + M$. Since $M(z^j) = p(j)z^j$, where $p(j) = b_0 + b_1 j + \cdots + b_{n-1}j(j-1)\cdots(j-n+2)$, equation (9) becomes

$$lpha_1 D_1 + \sum_{j=1}^\infty (lpha_{j+1} D_{j+1} + lpha_{j-1} C_{j-1}) z^j = \sum_{j=0}^\infty (\lambda - p(j)) lpha_j z^j \ = \sum_{j=0}^\infty \lambda_j lpha_j z^j \,, \ \ \lambda_j = \lambda - p(j) \,,$$

where Im $(\lambda_j) \neq 0$ $j = 0, 1, \dots$, since p(j) is always real. Hence,

$$egin{aligned} lpha_1 D_1 &= \lambda_0 lpha_0 \ lpha_{j+1} D_{j+1} + lpha_{j-1} C_{j-1} &= \lambda_j lpha_j \end{aligned} \qquad j=1,\,2,\,\cdots. \end{aligned}$$

Just as in the proof of the theorem, we have the single power series solution $\phi(z) = z^{\rho-1} + \alpha_{\rho} z^{\rho} + \cdots$, where D_{ρ} is the first nonvanishing D_j and $D_j \neq 0$, $j > \rho$. Moreover, for j sufficiently large,

(21)
$$|\alpha_{j+1}| \leq \left|\frac{\lambda_j}{D_{j+1}}\right| |\alpha_j| + \left(1 - \frac{\xi}{j}\right) |\alpha_{j-1}|,$$

where $0 < \xi < n - 1$.

The estimates on the growth of the $|\alpha_j|$, [3], will go through if we can show that

(22)
$$|\alpha_{j+1}| \leq (1 - \gamma j^{-1}) \max\{|\alpha_j| | \alpha_{j-1}|\}$$

for j sufficiently large and $\gamma > 0$. Using (4), (12), and the fact that $\lambda_j = b_{n-1}j^{n-1} + \cdots$, we have

$$|\lambda_j/D_{j+1}| = \varepsilon j^{-1} + \bigcirc (j^{-2}) ,$$

where

 $\varepsilon = |b_{n-1}/a_{n+1}(n)|$.

From (21) and (23) it follows that (22) holds provided $\xi - \varepsilon > \gamma > 0$ or $\xi > \varepsilon$. But $\xi < n - 1$, so we must have $|b_{n-1}| < (n - 1) |a_{n+1}(n)|$.

The case when $D_j = 0$ for $j > \rho$ is handled in the same manner as before, by showing that there exist λ , Im $(\lambda) \neq 0$, such that $\hat{\phi}$ is the only power series solution of $L_1\phi = \lambda\phi$.

References

1. A.L. Villone, Self-adjoint differential operators, Pacific J. Math., 35 (1970), 517-531.

2. _____, Self-adjoint extensions of symmetric differential operators, Pacific J. Math., **49** (1974), 569-577.

3. _____, Second order differential operators with self-adjoint extensions, Pacific J. Math., 56 (1975), to appear.

Received April 1, 1975.

SAN DIEGO STATE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) University of California Los Angeles, California 90024

R. A. BEAUMONT University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

D. GILBARG AND J. MILGRAM Stanford University Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B.]

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 59, No. 1 May, 1975

Shashi Prabha Arya and M. K. Singal, More sum theorems for topological	
spaces	1
Goro Azumaya, F. Mbuntum and Kalathoor Varadarajan, <i>On M-projective and</i> <i>M-injective modules</i>	9
Kong Ming Chong, Spectral inequalities involving the infima and suprema of functions	17
Alan Hetherington Durfee, <i>The characteristic polynomial of the monodromy</i>	21
Emilio Gagliardo and Clifford Alfons Kottman, <i>Fixed points for orientation</i>	
preserving homeomorphisms of the plane which interchange two points	27
Raymond F. Gittings, <i>Finite-to-one open maps of generalized metric spaces</i>	33
Andrew M. W. Glass, W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary, <i>a*-closures of completely distributive lattice-ordered groups</i>	43
Matthew Gould, Endomorphism and automorphism structure of direct squares of universal algebras	69
R. E. Harrell and Les Andrew Karlovitz. <i>On tree structures in Banach spaces</i>	85
Julien O. Hennefeld, <i>Finding a maximal subalgebra on which the two Arens</i>	00
products agree	93
William Francis Keigher, Adjunctions and comonads in differential algebra	99
Robert Bernard Kelman, A Dirichlet-Jordan theorem for dual trigonometric	110
series	113
Allan Morton Krall, Stielijes differential-boundary operators. III. Multivalued	105
Unit Universe King, On Career differentiation on Paracharacea	125
Tem Leuten A theorem on simultaneous chemiskilite	133
Kenneth Mandallana A. item land a familiar famil	147
Renneth Mandelberg, Amitsur conomology for certain extensions of rings of	161
Cov Lewis May, Automorphisms of compact Klein surfaces with boundary	101
Poter A MaCov Concralized aximumatric alliptic functions	211
Muril Lymp Bobertson Concerning Siu's method for solving $y'(t) = F(t)$	211
v(a(t)))	223
Pichard Lewis Roth On restricting irraducible characters to normal	225
subgroups	229
Albert Oscar Shar <i>P</i> -primary decomposition of mans into an <i>H</i> -space	237
Kenneth Barry Stolarsky. The sum of the distances to certain pointsets on the unit	237
circle	241
Bert Alan Taylor, <i>Components of zero sets of analytic functions</i> in C ² in the unit ball or polydisc	253
Michel Valadier, Convex integrands on Souslin locally convex spaces	267
Januario Varela, <i>Fields of automorphisms and derivations of C</i> *-algebras	277
Arnold Lewis Villone, A class of symmetric differential operators with deficiency indices (1, 1)	295
Manfred Wollenberg, The invariance principle for wave operators	303