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LUSIN AREA FUNCTIONS ON LOCAL FIELDS

JIA-ARNG CHAO

We show that over a local field, Lusin area functions and
nontangential maximal functions of a regular function are
equivalent in the L? ‘“norm’ for 0 < p <oco. As a conse-
quence, we have that ‘‘nice” singular integral transforms
preserve H?-spaces for 0 < p < co,

1. By a local field, we mean a locally compact, nondiscrete,
totally disconnected, (complete) field. Various aspects of harmonic
analysis on local fields have been studied. A list of references can
be found in [4]. We also refer to [4] for notation and prelimi-
naries.

Let K be a fixed local field with the ring of integers &, &7/ =
GF(q) where . is the maximal ideal in ¢ and ¢ is a prime power.
For ke Z, let P *={zxecK:|z|<q¢"), (T =F). FrF=y+ FPF
are spheres. The Haar measure on K has been normalized so that
|2 = de =1 and |.Z7;%| = ¢* for all k. The theory of regular

functions which are the local field analogue of harmonic functions
is studied in [10] and [4]. In particular, distributions on K have
been identified with regular functions on K X Z and the regularization
kernel R, (x) = ¢ *@_,(x), where @_, is the characteristic function of
7k, serves as the Poisson kernel.

Write (&% k) = {(x, k)e K x Z:2¢.Z°;'}. For a nonnegative
integer ! and ze K, let I'(z)={(z, k)e K X Z: |x — z| £ ¢**"} =
U. (&% k). For a distribution f on K or a regular function
flx, k) on K x Z, denote d,f(z) = f(x, k) — f(x, &k + 1). The Lusin
area function of f with respect to I, is given by

SUf(2) = (X |def (@) )

where the sum runs over distinet (7 k) I'(z). Write Sf(z) =
SUf(z) = G lduf(2)[)2.  The nontangential maximal function of
f with respect to I', is given by

m" f(z) = sup | f(z, k)| .

x

Write f*(z) = m f(2) = sup, |(z, k)|.

Let us suppose that f(x, k)—0 as k— o for each xe K. Let
| f 1, = sup, || £(-, k)]|, for 0 < » < co. It is shown in [10] that for
1< p<eo,

(1) Alfll, = ISFll, £ Bl fll, with constants 4,, B, > 0.
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It is easy to see that for 1 < p < «

(2) A1l = /1l = Goll £1l, with constant C, > 0.

In other words,

(3) USFll~ I f i~ for 1<p<eo.

From [4], we have that, for all nonnegative ! and &,

(e K: SVf(0) < =) = {we K: lim f(, k) exists}
= {ve K:m®f(z) < oo}

(4)

i.e., the above sets are equal except possibly for a set of measure
0. Our main objective is to show that

WSOf s ~ Im ™ fll, for 0<p<eo.

As a consequence, we show that “nice” singular integral transforms
preserve Hr-space (0 < p < o) which is the space of distributions
whose maximal function are in L°. The last result is the main
contribution of [5].

The euclidean version of the main theorem can be found in [2]
(see also [7]); its martingale version about Sf and f* is proved in
[1]. Our work has been motivated by these results. In Appendix
we shall discuss briefly how our argument can be applied to certain
martingales.

REMARK 1. The equivalence in L? “norm” is interpreted in the
obvious way, i.e., if one side is finite, so is the other and is bounded
by a constant multiple of the former one. The restriction that
f(x, k)—0 as k— o is needed only for the first inequality of (1)
and |[m™f |, = A,||SVfl,.

REMARK 2. A trivial modification gives us the same result for
K", the n-dimensional vector space over K. The “@-inequalities” of
Burkholder-Gundy [1][2] for S® and m™ could also be proved.

2. We first show that [|f*|, ~ |[mPf ]|, for 0 < p < .
LEmMMA 1. For » >0,

Hoe K: f*(@) > M| = H{ze K:mPf(2) > M| = ¢'[{re K: f*(x) >} .
Proof. [{f* > A = |[{m¥f > N} is obvious since f* < m®f.

Suppose mf(z) > N. Then there exists (x, k)e',(z) such that
[f(x, k)| > N. Hence Z*c{f* > A} and z¢ &2 %", Therefore
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HmPf >N = ¢ [{iF* >} .
THEOREM 1. || /*l, < [m®Fl, < ¢"* || f*[l, for 0 < p < os.
Proof. This follows from Lemma 1 and the following identity:
(5) ol = » [ V1t > Mldr, 0<p< e

Now let us break up the proof of ||SVf ||, ~ |[|m™f||,(0 < p < )
into several lemmas:

LEMMA 2. [|SOF|E = ¢'|[SFIl: = &I F I

Proof. Easy and known. (See Lemma 2.8(c) of [4].)

LEMMA 3. || f*[l, = 4,[|Sf]l, for 0 <p < 2.

Proof. By (5), it suffices to show the following estimate:
(6) (7% > M1 = A ((H(SF > hlds for 1> 0.

For a fixed N > 0, let

o(x) = sup {n: S,f(z) > » for some ze "t}

where S,f(2) = Cuza |def(2)])2. (Convention: sup @ = —.)
For xe K with o(x) = n, let

f(x, k) if k=zn+1,

0B = e n+1) if h<mn.

Hence Sg(z) < » and Sg(x) < Sf(x) for all z. Moreover, for x €
{0 = —}C{Sf <A}, we have g*(z) = f*(z) and Sg(x) = Sf(x). On
the other hand, suppose o(x) = n > — . Then there exists ze¢
Pt guch that S,f(2) > M. Thus 7™ C{z: Sf(x) > \} with z¢
2wt Therefore we have

{a: 0(2) > — oo} | < ql{z: SF() > M -
Now
[{F* >, 0> — wo}] < ¢/{SF > M|
< 2 ['e1iss > hlar

and, by Lemma 2 and (5),
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HF* >\ 0= —oo}| < [{g* >N = 207%|gll;
— 02| Sg 2 = 4\ Sjt]{Sg > 8| dt

— SZtI{Sg > t)|dt
< SZtI{Sf > 8|dt .
Thus

HAAS>MIZS >N 0> — oo} 4+ [{f* >\, 0= —oo}]
< (2¢ + 4 Szt]{Sf > t)dt .

This establishes (6) and Lemma 3.

LEMMA 4. For 1 >0 and 0 < p <2,
1SUf s = Bpllm®f ], -

Proof. Again, it suffices to show that for I >0 and N\ > 0,
152 > M1 = Bt [ tlmof > ghlat
0

Let p(2) = sup {n: | f(x, )| > N\ for some xe &# "}, For ze K
with p(z) = n, we have p(x) = n for all xe &#~"*"; and let

fx, k) if k=n+1,

g(z’k):{f(ac,n—l-l) it k<mn.

Hence {¢t = — o} = {m®f <A} and for p(z) = —, we have
g(x, k) = f(x, k) if xe F#~* or (x,k)e (). Thus on {z:(z) =
— oo}, SYg(z) = SV f(2) and m"Vg(2) = mPf(z) = N. Now

HSYSf >\, e > —oo}| = {m®Bf > N}
< o\ Sltl{m"’f > t)|dt
and by Lemma 2 and (5),

{SOS >, = —oo}| < [{SPg > M} = N72(1S"gf:
= ¢\?lglli < e llmPg |l

= vtz | Hmog >t
0
2
< 2q’7\,‘2§ tH{mOf > t}|dt
0

Hence
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HS®S > M| = 2(¢F + DA~ Slt!{m“’f > 8| dt .
0
Therefore Lemma 4 is proved.

LEMMA 5. Forl=0 and 2<p < =,
SO fll, = Coll fll -

Proof. Suppose p > 4 and let » be the conjugate index of p/2.
Thus 1 < r < 2. Consider a fixed ke Z. For xe K, let {x,}iL, be the
distinct coset representatives such that ;%" c &7~*, For ge
L™ with ]|g{], = 1, we have

|, Slar@Flo@de = 2| [df @)l oz, & + Dide
= 5| s @)l 1gG, b+ 1)]da

= ¢'| |as@F 19, k + 1)lds .
Hence it follows from this, Holder’s inequality, (1) and (2) that

[ ser@rlo@ide = 3 | S lds@ow]ds
= 3¢ | 1aef @Plg, b + Dlde

=¢'{ [S./@re*@)is

= ISR g* 1l
= Bl fI;

where B, depends only on » and gq. Thus

ISEF 1 = NSEFF s = sup || [S@F@T o)

= Bl SI5 -

Therefore ||SPf ], < C,||f ||, for 4 < p < .
Apply the Marcinkiewicz interpolation theorem to this and Lemma
2, we have

ISOf s = Coll fll, for 2<p < eo.

THEOREM 2. For [,h =0 and 0 < p < oo,
NSOF L, = [|m™ fl, .

Proof. The case of p = 2 is obvious.
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If 0 < p <2, then, from Lemma 8, Lemma 4 and Theorem 1,
we have for [ > 0,

171l = AlISFIl = A NSO f |l
< AB, |[mOF |l ~ 1>l -

If 2 < p < oo, then, by Theorem 1, (3) and Lemma 5,

lm ™ f 1l ;e 1| F* o~ 1 1l =~ [1SF 1l
=181 = Gl fll» -

Therefore || SUf ||, ~ ||lm™f]], for 0 < p < ~ and the proof of
the theorem is completed.

REMARK 3. The above argument simplifies the extension argument
as used in §2 of [4] and is essentially similar to the decomposition
argument of [5]. It is also a sort of stopping time argument for
martingales relative to a regular stochastic basis. (See Appendix.)
The main result (with respect to “truncated cones”) could be used
to show (4)—the Fatou-Calderon-Stein theorem, in a similar manner
as in [2].

3., Let m be a (multiplicative) unitary character on K* such
that it is homogeneous of degree 0 and is ramified of degree k = 1.
Denote Q(x) = cx(x)|x|™ where ¢ = 1/I'(x). (See [9] for details about
I'-function.) Let Q, = R,*Q and QY = Q,9_, for N>n + h. For a
distribution f on K or a regular function f(z, k) on K X Z, we note
that QV«f(x, k) = Q)*f(x, k) = Q¥+f(x, k) for n <k < N — h. Define

(Tof)@, ) = lim @"+f(z, k) for (s,k)eKx Z.

If feL?(K), 1< p < o, then this is just a sort of singular integral
transform as been studied in [8], [11] and [4].

For 0 < »p < =, let H?(K) be the space of all distributions f on
K whose maximal function f*¢ L?(K) with the H? “norm” [|f*|,-
From [5], we know that for fe H? (T.f)(x, k) is a well-defined
regular function. The regularization of the corresponding distribution
is just (T.f)(x, k). Moreover, the following is also shown:

THEOREM 3. T, preserves HP-spaces for 0 < p < . That 1s,
H(Tnf)*”:oN ”f*”p fO’)‘ 0<p < oo,

We show here how this result can be obtained as a consequence
of Theorem 2.

LEMMA 6. S™f(2) = SPT.f(2) for all z€ K.
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Proof. For a fixed ke Z and z¢ K,
dkTﬂf(x) = thf(x’ k) - Tn‘f(xy k+ 1) = Tzdlcf(x) .
For each me Z, let e, 1 =1,2, ..+, (¢ — 1)g"**, be coset represen-

tatives of ™"\ in {t:|t| = ¢™"'}. Then

T.f(z, k) = ¢ S fz— ™D gy

ltl>ak |

=c i q i S f(x — t)m(t)dt
m=k lt|=gm+1
oo —1)gh—1
= cq—hmzz,‘k(q i’zl w(et)f(w — b, m — h + 1) .
Thus
—1)gh—1
(7) T.df (@) = eg™" 3, a(e)f(w— ek k—h+1).

t=1

Now let g(x) be the restriction of d,f(x) on z + Z~**" for any
fixed 2. Hence from (7) we see that T.g(x) is also supported on z +
&?~# By Plancherel’s theorem, since |7| =1, we have

I T91l: = I(T=9)" Il = llz™*gll: = 1§91l = Il g]ls -
That is,

$1df @l = 510 )l

where x,7=1,2, -++, ¢*, are coset representatives of & *** in
7, Thus summing this up with respect to %, we have

SMf(2) = SVT.f(2) .

Proof of Theorem 3. It follows immediately from Theorem 2
and Lemma 6 that for 0 < p < oo,

11l = 1SV F 1l = ISV Tef lls ~ I (T=f)*l5 -

Appendix. Let (2, %7 P) be a probability space and {.94}.-, a
nondecreasing sequence of sub-g-fields of % Let f = {f,}.=1 be a
real-valued) martingale relative to {.9},-, and {d;};>, be the difference
sequence of f. For a nonnegative integer I, write

m®f = sup, E(| f..l] %)

and SVf = [Sis: E(di]| 4] f* = m"®f = sup,|f.| is the max-
imal function of f and Sf = SOf = [350 di]"* is the square function
of f. Burkholder and Gundy [1] proved that for a large class of
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martingales,

(8) NSF I~ I f*ll, for 0<p< .
However examples (in [1]) show that

(9) ISOf Mo ~ [Im®F 1l for 0<p<eo

fails to hold. Nevertheless by a slight modification of the previous
argument, we can show that this is true for martingales relative
to a regular stochastic basis (after Chow [6]).

Indeed, the crucial part of the proof is to consider the following
stopping time:

(@) = inf {n: E(| fonll o) <N (M>0).

Together with the regularity of the stochastic basis and (8), we get
(9) by a similar argument as before.

We remark that our argument gives a simplified proof of (8)
for martingales relative to a regular stochastic basis. Also the
argument used in Lemma 5 similar to the one in [3] provides a new
proof of that

lsfll, = Gl fll, for p>2

where sf = SV f = [, E(di].57,_,)]"* is the conditioned square func-
tion of the martingale f (relative to any stochastic basis).
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