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THE BRAUER GROUP OF POLYNOMIAL RINGS

F. R. DEMEYER

Let R be a commutative ring and S a commutative R-
algebra. The induced homomorphism B(R) -> B(S) of Brauer
groups is studied for the following choices of S. First, S =
R/I where / is an ideal in the radical of R. Second, S =
R[x] the ring of polynomials in one variable over R. Third,
S = K the quotient field of R when R is a domain.

In [3] M. Auslander and 0. Goldman introduced the Brauer group
B(R) of a commutative ring R. If S is a commutative ϋί-algebra
there is a homomorphism B{R) —> B(S) induced by the homomorphism
from R to S. Some of the choices for S considered in [3] are S —
R/I for an ideal I of R, or S = K the quotient field of R when R
is a domain, or S — R[x] the ring of polynomials in one variable
over R.

We observe here relationships between the homomorphisms of
Brauer groups induced from these choices for S. We show that if
I is an ideal in the radical of R and R is complete in its /-adic
topology then B{R) = B(R/I). This answers a question raised in [11].
If I is a nil ideal in R then B(R) = B(R/I). If R[[x]] is the ring of
formal power series over R then J3(#[[#]]) = B(R). If we assume
R is a domain with quotient field K an algebraic number field and
*i> •••,*» are indeterminates the homomorphism B(R[tl9 , tn]) —>
B(K(tlf , tj) is a monomorphism where K{tlf , tn) is the function
field in ^-variables over K. Let Bf{R[x\) be the kernel of the natural
homomorphism B(R[x]) —> 5(^) where a? is an indeterminate. If R
is a domain there is a procedure given in [13] for calculating Bf(R[x])
in terms of B\R[x]) where R is the integral closure of R. In [3] it
is shown that Bf(R[x]) = 0 if R is a regular domain of characteristic =
0. We fill in the gap between these two results in the Noetherian
case.

If R is an integrally closed Noetherian domain, let Ref (R) denote
the isomorphism classes of finitely generated reflexive .R-modules M
with EndΛ (M) protective over R and let Pro (R) be the projective
elements in Ref (R). Under the multiplication | M\ | N\ = | (M(x) N)** I
Ref (R) is a monoid, Pro (R) is a submonoid and Ref (iϋ)/Pro (R) is
a group (see [6]). There is a split exact sequence.

0 -> Ref (£[£]) — Ref (R[x])/Pτo (R[x]) — Ref (i2)/Pro (R) ~> 0 where
Ref (R[x]) = Ref (i2[#])/(Pro (#[#]) + Ref (i?)). Utilizing results in [1]
we show that the sequence.

O-+Reί'(R[x])-+B'(R[x])-*B'(K[x]) is exact. If R is any von
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Neumann regular ring then B'(R[x]) is trivial if and only if R/m is
a perfect field for each maximal ideal m of R. If R is a Boolean
ring, B(R[x]) = (0).

We adapt an example from [14] to obtain a Noetherian domain
R with quotient field K such that B(R) —* B(K) is monomorphism but
B{R[x\) —> B(K{x)) has an infinite kernel. We also give some examples
of domains R containing a prime ideal I such that the homomorphism
B{R) -* B(R/I) is not onto.

Throughout R denotes a commutative ring and unless otherwise
specified (x) means 0^. An Azumaya algebra is called central separable
in [3] and [10].

Otherwise all our undefined terminology, conventions, and nota-
tions are as in [10]. This paper was written while the author visited
at the Forschungsinstitut fiir Mathematik in Zurich. The author
thanks the people of the Institute, and especially Professor M. Knus
for a sympathetic ear.

LEMMA 1. Let I be an ideal in the radical of a commutative
ring R. If for any Azumaya R-algebra A idempotents can be lifted
from A/IA to A then the induced homomorphism B(R) —> B(R/I) is
a monomorphism.

In [9] we showed that if / is nilpotent then B(R) is isomorphic
to B(R/I). The proof there that B(R)—+ B(RjI) is a monomorphism
also proves Lemma 1. See also [16].

THEOREM 2. Let I be an ideal in the radical of a commutative
ring R. If R is complete in its I-adic topology then the homo-
morphism B(R) —• B(R/I) is an isomorphism.

Proof. Let A be a Azumaya i?-algebra. Since R is Z-adically
complete and A is finitely generated as an ϋJ-module, we have A is
complete with respect to the ideal I A. Thus idempotents can be lifted
from A/IA to A so by Lemma 1 B(R)—+B(R/I) is a monomorphism.

Next let Ao be a Azumaya JS/J-algebra. We showed in [9] in
proving that B(R) —• B(R/I) is onto when I is nilpotent that one can
construct a sequence At of Azumaya algebras over R/Γι with Ai/P^A^
At-i by a natural homomorphism φt. We let A — lim(A,). Then A

is an i2-algebra with AjΓ1 ~ At. If a e A we let the natural image
of a in At be a\ Let al9 •••, an be elements of A with α?, •••, a\
generating A/I = Ao as an .β-module. By Nakayama's lemma (Prop.
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2.2 p. 85 [5]) the elements αί, •••,(&£ generate At as an iϋ-module
for each i. Let ae A. Then

Thus

o> = Σ αi,oαj + α1 where x1 e I(AfP) ,

we can write

x1 = Σ 7i,o^i where 7 i>0 e / .

Thus

r^1 — V (θί- 4- Ύ. ^ ^ L

Let α i ( 1 = ajy0 + 7i>0, then α1 = ΣΓ=i^Mαj a n d ^ M — aj>oel. Continu-
ing inductively we find

n

a* = Σ ajΛa)

Let a,- = lim^oo α i ? i and let b — Σy=i α^α,-. For any i, α* = bl so 6 = a
and A is finitely generated as an i2-module.

For any maximal ideal m of R, R/m® A = Rjm® R/Kx) A —
JS/w(g)A0. Thus R/m0A is separable over ϋ?/m. By Theorem
2.7.1. of [10], A is separable over R. Let Z(A) be the center of A,
then Z(A) is a direct summand of A so ί?(A) is finitely generated
over R. Moreover, 0 —> lϊ/w (x) Z(A) —• U/m (x) A is exact so for every
maximal ideal m of R, R/m (g) Z(A)/B = 0. Thus #(A) = i2 and A
is an Azumaya i?-algebra completing the proof.

COROLLARY 3. Let N be a nil ideal in the commutative ring R,
then B(R) = B(R/N).

Proof. The hypothesis of Lemma 1 are satisfied since idempotents
can be lifted modulo a nil ideal so the map from B(R) to B(R/N)
is one-to-one.

Let A be an Azumaya algebra over RN = R. There is a finite-
ly generated subring S of R and an Azumaya S-algebra B with
BQ)s R = A. Let sl9 '"9sm be the generators of S over its prime
ring and let sl9 , sm be corresponding elements in R. Let S be
the subring of R generated by su , sm. Now N consists of nilpotent
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elements in R so Nf) S is a nil-ideal in S and S/Nf] S = S. Since
S is Noetherian, i\Γ Π S is nilpotent. As we saw in the proof of
Theorem 2 there is an Azumaya S-algebra B with B ®SB = B. Let
A = R®SB, then

thus the homomorphism from B(R) to B{RjN) is onto.

COROLLARY 4. Let R[[x\] be the ring of formal power series
in x over R, then B{R) = B(R[[x]]).

Proof. The ideal (x) generated by x is in the radical of R[[x]]
and R[[x]] is complete in the topology induced by this ideal. Thus
by Theorem 2, B(R) ~ B(R[[x]]).

LEMMA 5. Let R be a commutative ring and S a commutative
R-algebra. Then the sequence

0 > B(S[x]/R[x])/B(S/R) > B'{R[x}) > B'(S[x])

is exact and B(S[x]/R[x]) = B(S/R) 0 L for an abelian group L.

Proof. Consider the diagram of Brauer groups where the maps
are all natural.

0 0 0

ί
ί

0 > B(S[x]/R[x]) > B(R[x]) > B(S[x])

1 ί I
*• JLJ > JD (^Xί[Xjj ^ JD ^ [ ^ J /

1 ί i
0 0 0

The first two horizontal rows are exact by definition and the last
two vertical rows are split exact. The exactness of the third horizontal
row follows as does the split exactness of the first vertical row.
This gives the lemma.

Let R be a domain with quotient field K. Let K(x) be the field
of fractions of K[x]. If K is perfect then L in Lemma 5 is B'(R[x])
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since B'{K[x\) = 0 by Theorem 7.5 of [3]. Thus B(K[x]/R[x]) =
B(K/R)ξ&B'(R[x]). Later we give an example where B'{R[x\) is
infinite and B(K/R) = 0. If K is any field then 0 — B{K[x])->B(K{x))
is exact so B(K(x)/R[x]) = B(K[x]/R[x]).

THEOREM 6. Let R be a domain whose quotient field K is an
algebraic number field. Then 0 —* B(R[x19 , xn]) —> B(K(xu , #J)
is eccαcέ.

Proo/. The case w = 0 is in [7]. By Corollary 3.9 of [14] B'(R[xίf

• , a?Λ_J[a?Λ]) = 0. Now K(xl9 , xn) is a perfect field thus B(K(x19

. . . , xn)/R[xu , a?J) - B(K(xu , a ̂ / U f o , , αv.J) the proof is
complete by induction.

Next let i? be a Noetherian integrally closed domain. Let Ref (R)
denote the isomorphism classes of finitely generated reflexive .β-modules
M with Endjj (M) protective. Multiply two such classes by \M\ | JV| =
I (Λf (g) JV)** I where ikf* = Hom^ {M, R). Then Ref (JS) is a commutative
monoid. Let Pro (R) be the submonoid of those M which are projec-
tive. Then Ref (i?)/Pro (R) is a group (see [6]).

The natural homomorphism from R[x] onto R and its splitting
map from R to R[x] induces a split exact sequence

0 > Ref (R[x])/(Reί (R) + Pro (R[x])) -—> Ref (Jβ[&])/Pro (jβ[a?])

Let Ref (R[χ\) = Ref (Λ[aj]/(Ref (R) + Pro

THEOREM 7. Leέ R be a Noetherian integrally closed domain
with quotient field K. Then the sequence

0 > Ref (R[x]) > B\R[x\) > B\K[x\)

is exact. If K is perfect then Ref (i2[#]) = B'(R[x]).

Proof. Let Cl (R) be the elements of Ref (R) of rank = 1 and
let Pic (R) be the subgroup of pro jective modules in Cl (R). Consider
the next diagram. By a theorem of B. Auslander (Theorem 2 in [8])
the first horizontal row is exact. By 7.19 p. 147 of [5] the first
vertical row is exact. The last three vertical rows are split exact.
Thus the bottom horizontal row is exact. If K is perfect then
B'{K[x\) = 0 and Bf(R[x]) ^ Ref (i2[#])/(Ref (R) + Pro (R[x))). This
completes the proof.
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0

1
C1(Λ)/Pic(i2)

I
Cl (tf [x])/Pic (B[x

1
0

P. R. D E M E Y E R

0

1
— Rβf(Λ)/Pro(JB)

1
1) — Ref (i2[x])/Pro (B[x

I
-»Ref (B[x])

1
0

0

1
—> B(R) ->

I
\)-+B(K[x])-+

1
~*F(B[x])~*

1
0

0

1
B(K)

1
2?(lΓ[x])

1
1
0

Let R be a commutative von Neumann regular ring and let §
be the collection of ideals I in R maximal with respect to the pro-
perty that / is generated by idempotents. Then 3 is the set of max-
imal ideals of R and R is isomorphic to a subring of Hies R/I (direct
product).

THEOREM 8. Let R be a commutative von Neumann regular
ring, then B{R) = B(R[x]) if and only if R/I is a perfect field
for each maximal ideal I of R. If R is a Boolean ring then
B(R[x]) = 0.

Proof. Consider the diagram

0 > B{R) > ί

1
0 > B(B[x\) — * Π B(B/I[x])

1 "' 1
0 > B'(B[x]) > Π B'(B/I[x])

t "" 1
0 0

The idempotents of R[x] are precisely the idempotents of R so
8 is the Boolean spectrum of R and the set {I R[x]\Ie§} is the
Boolean spectrum of R[x]. In [15] it is shown that the first two
rows of the diagram are exact, thus the third row is exact. If R/I
is perfect for all Ie§ then Π/e, B\R/I[x\) = 0 and B\S{x\) = 0.

If B\R[x\) Φ 0 then B\R/I[x\) Φ 0 for some /. For this I the
field R/I is not perfect. If R is a Boolean ring then R is von Neumann
regular and R/I is the field with two elements for each Ie$. Thus
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B(R) s B(R[x]) and B(R) = (0) so B(R[x]) = 0.

2* First we consider two examples also contained in [14] Let
F be the algebraic closure of the field with ^-elements and let R =
F[t] be the ring of polynomials in one variable over F. Then R is
a principal ideal domain with a nonperfect quotient field K. By
Theorem 7 B'{R[x]) is a subgroup of B\K[x\). On p. 390 of [3] a
nontrivial element of B\R[x\) is given.

Next let R = \ZV 2 (s2 + 1), s] where s is an indeterminate and
Z is the ring of rational integers. The integral closure R of R is
Z[V%s] and the conductor c = (s2 + l)ίί. It is shown in [13] that
Br{R[x]) = Z/(2)[t] but that B(K/R) ~ B(R/R) = 0 where Z" is the
quotient field of R. Now K is a field of characteristic = 0 so Br(K[x]) =
0 and B{K[x\) —> B(K(x)) is a monomorphism.

Apply Lemma 5 with S = K and we have

) = B(K[x]/R[x]) ~ Z/(2)[t] .

Thus R is a domain with B(R) —> jB(ίί) a monomorphis
) has an infinite kernal.

Next let Z denote the rational integers, it is well known that
B(Z) = 0. Thus B(Z[x]) = 0 since Z is a principal ideal domain of
characteristic = 0. However, B(Z[x]/(2x - 1)) = B(Z[l/2]) Φ 0 since
the ordinary quaternion algebra represents a nonzero class in

Now let L be a finite extention of the perfect field k. Then
L = &[£]/(2>(#)) for some irreducible polynomial 2>(#) e k[x]. Choose
k, L so that the natural map B(k) —> B(L) is not onto. Then one has
the commuting diagram

B(k[x]) >B(L)

\ /
\ /

B(k)

Since B(k) = B(k[x]) we have B(k[x]) — 5(L) is not onto. The ideal
generated by p(x) is maximal in k[x\.

Next let Zv be the p-adic completion of the ring Z of integers
for a finite prime p. Let 5 be the completion of the localization at
(p) of Zp\t\. We get the following diagram

Also R is a principal ideal domain of characteristic = 0 so B'(R[x\) =
0. Since B(R/(p)) = B(R) by Theorem 2 we have 5(#/(p) - S(J2) =

and thus K = 0. However -R/(p) is not a perfect field so
) ^ 0 (p. 390 of [3]). Thus B(R[x] — B(R/(p)[x]) is not onto.
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0 —

0 —

0

ί
-*κ

I
—> K

1
0

F. R. D E M E Y E R

0

i
> B{R) >

ί
> B(R[x]) >

ί
>B'(R[x]) >

i
0

0

i
B(R/(p))

ί
B(R/(p)[x])

Δ»(iBmΓ
0

If R is a local ring with maximal ideal m is the induced homo-
morphism B(R)—>B(R/m) onto? If R is a Noetherian integrally
closed domain with characteristic R = 0 is JB(J?) = B(R[x])l If JS is
a Noetherian integrally closed domain is Ref' (R[x]) — 0?
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