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Let {T(t): t ^ 0} be a uniformly bounded semi-group of
linear operators on a Banach space X such that 1 is an
eigenvalue of each T(t) and T(a) is compact for some a > 0.
Then the ergodic limit A(t) = limn_ {l/n){T(t) + T2(t) + ••• +
Tn{t)} exists for each ί. In this paper it is proved that if
each T(t), t > 0, is compact and 1 is, in a certain sense, an
isolated eigenvalue of all T(t), then for t > 0, the dimension
of the null space of T(t) — I is independent of t. Sufficient
conditions are also obtained for the lim*-*, T(t) to exist.

Suppose X is a real or complex Banach space. Let B denote
the unit ball in X and [X] the space of bounded linear operators on
X into X. A set 3ίΓ c [X] is said to be collectively compact if
3ίΓB - {Kx: Ke JΓ, xeB} is relatively compact. Basic properties of
such sets were obtained by Anselone and Palmer [1, 2]. Some of
their results will be applied to semi-groups in the following sections.

2* Ergodic family associated with a semi-group* Let {T(t): t^O}
be a uniformly bounded semi-group of linear operators on a E-space
X such that T(a) is compact for some a > 0 and 1 is an eigenvalue
of each T(t). Then [4, VIII. 8.4] yields that

lim (l/n){T(t) + T\t) + + T\t)}

= lim (l/n){T(t) + + T(nt)}

= A(t)

say, exists in the uniform operator topology and defines a projection
operator satisfying A(t) = T(t)A(t) = A(t)T(t). Also, A(t) is the
residue operator in the Laurent expansion of (λ — T(ί))~ι in the
neighbourhood of 1 and is represented by the Dunford integral

A(t) = (l/2;ri) \ (λ -

where C is a sufficiently small circle with centre at 1 and will, in
general, depend upon t. For t = 0, Γ(0) = A(0) = I the identity
operator. {A(t): t ^ 0} will be called the ergodic family associated
with {T(t):t ^0}.

When T(ά) is compact for some a > 0, the family {T(t):t^a}
is collectively compact and totally bounded in the uniform operator
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topology [3]. But nothing can be said about T(t) for t < a. How-
ever, the following proposition shows that the situation is more
satisfactory in respect of the family {A(t)}.

PROPOSITION 2.1. Let {T(t): t ^ 0} be a uniformly bounded semi-
group on a B-space X such that 1 is an eigenvalue of each T(t) and
T(a) is compact for some a > 0. Then for each e > 0, the ergodic
family {A(t): t J> ε} is collectively compact.

Proof. Since A(t) = T(t)A(t)t by repeated application, we have
A(t) = T(nt)A(t) for all positive integers n. For t > 0 T(nt) is compact
for sufficiently large n. Hence, A(t) will also be compact. Now for
ε > 0, choose a positive integer k so that kε ̂  a. Then kt ^ a for
t ^ ε. Therefore, 3ίΓ = {T(fc£): * ̂  ε) *s collectively compact. Now,
|| T(t) II ̂  Λf implies || A(ί) || ^ M. Hence, ^ = {A(ί): t ^ ε} is uni-
formly bounded. We can now conclude that

3tl//ί = {T(Λί)°^(s): ί, s ^ ε}

is collectively compact, because, by [1, Prop. 2.3], if <5Γ is collectively
compact and ̂ € is uniformly bounded, then SίΓ^ is collectively
compact. The result now follows from the fact that {A(t): t ^ ε} is
a subset of

COROLLARY 2.2. The family {A(t): t ^ ε} is totally bounded in
the uniform operator topology.

Proof. The above arguments in respect of {T(t)} also hold for
the dual semi-group {Γ*(ί)} Hence, {A(t): t ^ ε} and {A*(£): ί ^ ε}
are both collectively compact. The desired conclusion follows from
the fact that if _%7 _%"* are both collectively compact, then 3ίΓ is
totally bounded in the uniform operator topology [6, Thm. 3.1].

3* Spectral properties* In Section 2 strong continuity of T(t)
was not necessary. But, for the spectral properties to be discussed
now, we shall require strong continuity. Let, as usual, σ(T(t)),
p(T(t)) denote the spectrum and the extended resolvent set of T(t)
and R(X, T{t)) the inverse (λ — T(t))~x. The following proposition
proved in [3] leads to the strong continuity of A(t) which is crucial
for the main result.

PROPOSITION 3.1. Let {T(t):t^O} be a uniformly boundedr

strongly continuous semi-group on a B-space X such that T(t) is
compact for each t > 0. For a > 0, let Ω be a neighbourhood of
σ(T(a)), and A = p(T(a)) - Ω. Then
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( i ) there exists a 3 > 0 such that, for \ t — a | < 3, σ(T(t)) c Ω
and Λczp(T(t)).

(ii) As t->a, (λ - T(t)Yιx—> (λ - Γ(α))"1^ uniformly on Λ.

PROPOSITION 3.2. Lei {T(0 £^0} δe α uniformly bounded,
strongly continuous semi-group on a B-space X such that 1 is an
eigenvalue of each T(t) and T(t) is compact for each t > 0. Suppose
further, that for each a > 0, there exists a circle C with centre at
1 in the complex plane and a real number 3 such that, for 1t — a | < 3,
T(t) has no eigenvalue in C except 1. Then for t > 0, A(t) is strongly
continuous in t.

Proof. We know that

A(t)x = (l/2πi) \ (λ - T{t)YιxdX

where, in general, Γ depends upon t. But, under the hypothesis on
C, we may assume that

A(t)x = (1/2 πi) [ (λ -

for all t with 11 — a \ < d. Again, by proposition 3.1, (λ — T(t)) ιx —>
(λ — T{a)Yιx uniformly on C as t—+ a. Hence, for any a > 0, we
have A(t)x —* A(a)x as t —> α. This completes the proof.

Let R(T), N(T) denote the range and null space of an operator
T and dim R( T), dim N{ T) their dimensions. When Tn -> T pointwise,
dim R(Tn) > dim R(T) eventually. But, when we are dealing with
projections, the following result [2, 4.2] gives a more precise esti-
mate.

THEOREM 3.3. Let E and En, n^l, be projections in [X] such
that En~*E pointwise and {En — E] is collectively compact. 'Then,
eventually dim EnX — dim EX.

THEOREM 3.4. Let {T(t)} be the semi-group of Proposition 3.2.
Then for each a > 0, there exists d > 0 such that dimN(T(t) — I) =
dim N(T(a) — /) whenever 11 — a \ < d.

Proof. Observe first that R(A(t)) = N(T(t) - I) since A(t) is the
ergodic limit of T(t). Suppose that there does not exist any 3 with
the required property. Then, by using Proposition 2.1, it is possible
to construct a sequence of projections for which the Theorem 3.3 will
not be true.
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THEOREM 3.5. // {T(t)} is the semi-group of Proposition 3.4,
then for t > 0, dim N(T(t) — I) is independent of t.

Proof. By the last theorem the function t —> dim N( T(t) — I) is
continuous and since it takes only positive integral values, it must
be a constant function.

4* The nature of T(t) at ί = ©o „ The first result of this section
will be a lemma proved in [5] by using collective compactness.
However, the proof given here throws some light on the nature of
T(t) at t = co.

LEMMA 4.1. Let Te [X] be such that {Tn:n^t 1} is uniformly
bounded and Tk is compact for some k ^ 1. Then {Tn:n^l} is
totally bounded in the uniform operator topology.

Proof. The conditions on T ensure that σ(T) is contained in
the closed unit disc with centre 0 in the complex plane and that
there are only a finite number of simple poles of R(X, T), say Xlf , Xp

on the circumference of the disc [4, VIII. 8.1]. If Au •••, A> are
the residue operators in the Laurent expansion of R(X9 T) in the
neighbourhoods of Xu , Xp respectively, then by using the standard
technics of operational calculus, it can be easily proved that

(I) Tnx = (l/2πi) \ XnR(Xf T)xdX
Jc 0

where Co is a circle with centre at 0 and radius less than 1. Since
] λ I < 1 on Co, the first term on the right tends to zero uniformly
on Co and on bounded sets of X. Again | Xκ \ — 1 for k = 1, , p.
Hence {λ̂ : n ^ 1, k = 1, , p) is totally bounded. It is easy to
extract a sequence {%J such that λj* converges to μk say, for k — 1,
•••,?>. It then follows that

Tn*x > μtAix) + + μPAp(x) .

The convergence is obviously uniform on bounded sets of X.

PROPOSITION 4.2. Let {T(t): t ^ 0} be a uniformly bounded semi-
group such that T(a) is compact for some a > 0. For any t>0,
let At = Ai(t), , Ap — Ap(t) be the residue operators in the Laurent
expansion of R(X, T(t)) in the neighbourhoods of its poles Xl9 , λp

say, lying on the circumference of the unit disc. Then, there exists
a sequence nt = nt{t) such that, as nt —> oo 9 T(nit)x converges to a
linear combination of A^x, , Apx for each x.
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Proof. Follows immediately when the previous lemma is applied
to T(t).

PROPOSITION 4.3. Let {T(t): t ^ 0} be a uniformly bounded semi-
group on a B-space X such that T(a) is compact for some a > 0.
Suppose 1 is the only eigenvalue of T(t) on the unit circle in the
complex plane for each t > 0. Then lim^oo T(nt) = A exists in the
uniform operator topology for each t > 0 and A is independent of t.

Proof. When the conditions of the proposition are satisfied equa-
tion (I) of this section applied to T(t) gives

(II) T(nt)x = Tn(t)x = (l/2πi) [ Xn(X - T(t))~ιxd\ + A(t)x

where A = A(t) is the residue operator in the Laurent expansion of
(λ — Tit))'1 around 1 and Co is a circle with centre at 0 and radius
less than 1. Now | λ | < 1 on Co and therefore Xn-+0 as n—*°o.
Hence taking limits in the above equation as n —> °o we get
lim,^ T(nt)x = A{t)x9 the limit being uniform on bounded sets of X.
Now, to prove that A(t) — A is independent of t note that A(t)A(s) =
lim^eo T(nt)T(ns) = limΛ_00 T(n(s + t)) = A(s + t) = A(s)A(t). Hence
{A(t)} is a semi-group. Again, for t Φ s, let t < s. Then by the semi-
group property R(A(t)) z> R(A(s)) where R denotes the range. Also
A(t) is a projection. Therefore A(t) = A%(t) = A(nt) for each positive
integer n. Choose n so that nt > s. Then we have R(A(t)) =
R(A(nt)) c R(A(s)). Hence R(A(t)) = R((A(s)). Now, it is easy to prove
that if P, Q are projections such that PQ = QP and i?(P) = i?(Q)
then P = Q. Therefore we must have A(t) = A(s). This completes
the proof.

COROLLARY 4.4. N(T(t) — I) is independent of t for t > 0.

Proof. An application of corollary, Theorem 2 in [7, VIII, § 3]
leads to N(T(t) - I) = R(A(t)) =

REMARK 4.5. In the proof of the Proposition 4.3 A(t) is proved
to be independent of t by using the fact that A(t)A(s) = A(ί + s) =
A(s)-4(ί) and that 4̂.(ί) is a projection. This means that the only
semi-group of projections is the semi-group T{t) = P a projection
for all £.

In the next proposition it will be seen that the pόintwise con-
vergence of T(nt) in t proved in Proposition 4.3 can be strengthened
so as to be locally uniform in t. This essential for the final ergodic
theorem.
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PROPOSITION 4.6. Let {T(ί):ί;>0} be a uniformly bounded,
strongly continuous semi-group on a B-space X such that T(t) is
compact for each t > 0. Suppose there exists a circle in the complex
plane with centre at 0 and radius less than 1 such that 1 is the
only eigenvalue of each T(t)(t > 0) outside this circle. Then for
each t > 0, liτnn ̂  T(nt) = A exists in the uniform operator topology,
the convergence being locally uniform on t, i.e., for each a > 0 there
exists a positive 3 depending upon a such that the convergence is
uniform on the interval \ t — a | < 3.

Proof. The equation (II) of this section is now

(III) T(nt)x = (l/2πi) \ Xn(X - T{t))~ιxdX + Ax
JCo

where in general CQ depends upon t. But, under the hypothesis made,
Co may be assumed to be independent of t. Then by Proposition 3.1
the set {(λ — Tit))'1: X e Cθ9 \ t — a \ < 3} is uniformly bounded for
some 3 > 0, i.e., ||(λ - T(t))~L\\ < M say, for all λeC 0 and \t - a\ < 3.
Hence by equation (III) we have

|| T ( n t ) x - A x || < | (l/2πi) \[ \\ Xn(X - T(t))~ιx \\\dX\

< (M/2π) [ I λ \n I dX I
Jc0

> 0 as n > since | X \ < 1 on Co

It is obvious that the convergence is of the required type.

LEMMA 4.7. Suppose {T(t): t ^ 0} is a family of bounded linear
operators on a B-space X such that l im,^ T(nt) = A exists in the
uniform operator topology where A is independent of t and the
convergence is uniform on some open interval. Then lim ôo T(t) — A
in the uniform operator topology.

Proof. We may assume that T(nt) —> A uniformly on 11 — a \ < d.
Then for ε > 0, there exists d > 0 and a positive integer N such
that || T(nt) - A \\ < ε for all n ^ N and all t in 11 - a \ < d or
equivalently || T{t) — A \\ < ε for n ^ N and \t — na\ < nd. Let In

be the interval (na — nd, na + nd). Then In has a nonempty inter-
section with In+1 if and only if na + nd > (n + l)a — (n + 1)3 or
equivalently (2n + 1)3 > a. Choose M so that n ^ M implies n^ N
and (2n + 1)3 > a. Then, for each n ^ M, In and IΛ+1 have a non-
empty intersection. Hence, any t > Ma — Md falls in some In with
n ^ M. Therefore we must have || T(t) - A \\ < ε for t> Ma - Md.
This completes the proof.



COLLECTIVELY COMPACT SETS AND THE ERGODIC 405

In the light of this lemma, the Proposition 4.6 and the Corollary
4.4, the following ergodic theorem now becomes obvious.

THEOREM 4.8. // {T(t): t ^ 0} is the semi-group of Proposition
4.6 then lim^^ T(t) exists in the uniform operator topology, and
N(T(t) - I) is constant for t > 0.

REMARK. In §§ 3 and 4 the continuity of R(X, T(t)) in t plays
a crucial role. If it is assumed that T(t) is compact for each t > 0,
then the strong continuity of T(t) in t implies uniform continuity
and this in turn implies the uniform continuity of iϋ(λ, T(t)) for
Xep(T(t)). But if instead of assuming the compactness of T(t) for
each t > 0, it is assumed that for each t > 0 there exists 3 > 0 such
that {T(t) — T(a): \ t — a | < 9} is collectively compact then the strong
continuity of T(t) would not imply uniform continuity but the theory
of collectively compact operators can be invoked to ensure the strong
continuity of R(X, T(t)).
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