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With the following results, we generalize known metriza-
tion theorems for spaces with large basis dimension 0 i.e.,
non-archimedian spaces) to the higher dimensions: Theorem.
If X is a normal iΓ-space with countable large basis dimen-
sion, then X is metrizable. Theorem. If X is a normal
wd-apace with countable large basis dimension, then X is
metrizable.

I* Introduction* A collection Γ of subsets of a set X is said
to have rank 1 if whenever gx and g2 are in Γ with g1 Π g2 ^ 0
then # i C 0 2 or g^ag^ According to P. J. Nyikos [13], a topological
space X has large basis dimension ^ n (denoted Bad X ^ n) if X
has a basis which is the union of n + 1 rank 1 collections of open
sets. X has countable large basis dimension (Bad X ^ ^ 0 ) if X
has a basis which is the union of a countable number of rank
1 collections such that each point of X has a basis belonging to one
of the collections (a property which is automatically true in the finite
case). Bad X coincides with Ind X and dim X for metric spaces.

Spaces having large basis dimension 0 are usually called non-
archimedian spaces. Theorems of Nyikos [11] and A. V. Archangelskii
[3] show that a non-archimedian space is metrizable if and only if
it is a I'-spaee or a w^ί-space. In this paper we show that these
results are valid, under mild assumptions, for the higher dimensions.
Our results also improve a result of G. Gruenhage [6], who showed
that compact spaces having finite large basis dimension are metrizable.

IL Main results* According to Nyikos [11], a tree of open sets
is a collection Γ of open sets such that if ge Γ, then the set {g/ e
Γ\g' i) g} is well-ordered by reverse inclusion; that is, g ^ gf if and
only if gz) g'. Nyikos shows that the rank 1 collections for spaces
with Bad X ^ ^ 0 can be considered as rank 1 trees of open sets.
The following fact will be used in our proofs:

LEMMA 1. Let T be a rank 1 tree of open subsets of a regular
space X which contains a basis at each point of a subset Xr of X.
Then if ^ is a cover of X' by open subsets of X, there exists a
subset T' of T such that

( i ) Tr is a cover of Xf\
(ii) the elements of V are pair wise disjoint;
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(iii) t e Tf implies that either t is degenerate or t is a proper
subset of some member of *?/.

Proof. Put t in T if and only if (a) either t is degenerate or
there is a member U of <%S such that t is a proper subset of U and
(b) there is no predecessor of t in T whose closure is a proper subset
of some element of ^/. Since T contains a basis at each point of
X' and since the predecessors of a given t e T are well-ordered, it
is easy to see that T" covers X'. Further, since T is a tree, the
members of Tr are mutually exclusive.

Nyikos calls a space basically sereenable if it has a basis which
is the union of countably many rank 1 trees of open sets. Every
space X with Bad X ^ ^ 0 is basically sereenable. Basically sereenable
spaces are, of course, sereenable; that is, every open cover has a
σ-pairwise disjoint open refinement. While the following result is
known, for the sake of completeness, we include its easy proof:

LEMMA 2. A sereenable countably compact space X is compact

Proof. Let ^ be an open cover of X and let T= U { Tn\n =
1, 2, •} be an open refinement of U covering X such that, for each
ί, the members of Yl are mutually exclusive. The set {Vn = U 3^ | n =
1, 2, •••} is a countable open cover of X; hence, there exists a finite
subcover {Vnι, V%2, , Vnjc). Then T%1 U Tn2 U U T%k is a point-finite
refinement of ^ . Thus, X is metacompact and it is well-known

that a metacompact countably compact space is compact.
According to C. R. Borges [4], a space X is a wΔ-space if there is

a sequence &u &2f of open covers of X such that whenever x e X
and xn e St (x, 5?n) for each n, then {xlf x2, ...} has a cluster point.

THEOREM 1. If X is a regular wA-space with countable large
basis dimension, then X has a point countable basis.

Proof. Let g^, Sf2, be a sequence of open covers of X satis-
fying the properties given in the definition of a wJ-space. Let ^ ,
^29 - a n d Xlf X2, b e s e q u e n c e s s u c h t h a t X =\J{Xt\i = 1,2, •••}
and, for each i, ^ is a rank 1 tree of open sets containing a basis
at each point of Xt.

For each i < ω0 and a < ωlf we construct a collection &(i, a)
as follows: let &(i, 1) be a collection of mutually exclusive members
of ^ that refines ^ Ί and covers Xt.

Suppose &(i, β) has been defined for β < a. If α: is not a limit
ordinal, applying Lemma 1, let &(i, a) be a collection of mutually
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exclusive members of ^
( i ) if j < ω0, then ^{i, j) refines S^ ;
(ii) . ^ ( i , α) covers (U ^ ( i , α - 1)) Π -X*;

and (iii) # e ^ ( i , α) implies # is a proper subset of some member
of &(ί, a — 1), or g is degenerate. If a is a limit ordinal, for each
x e Xif let B(a, x) = Int (0/κ* {# e ^ ( i , /S) | x e g}). Note that if x and
2/ are in Xif then either B(α, x) = B{a, y) or B(a9 x) Π -£?(#, 1/) = 0-
Let . ^ ( i , α) = {B(a, x)\xe XJ.

Let ^ * = U«<ωi ^ < A O We will show that . ^ * is a point
countable collection forming a basis for X^ in X.

We will say that g is a chain in ,ζ%%* if # is a function from
an initial segment of ωx into ^ * so that (1) g(a) e &(ί, a) and (2)
if β < α% then (̂/S) 3 #(α:). Note that by our construction, if β < a,
then g{β)zD g(a). Furthermore, if xeXif then there is exactly one
maximal chain, say g, such that g(a) contains x for every a in the
domain of g.

Claim 1. The domain of each maximal chain in . ^ * is countable
(and so, ^ * is point countable in X).

Proof of Claim 1. Suppose the contrary; i.e., there is a chain,
say g, of length co10

Note that g(ωQ + 1) — Π«<ωi 0(αO is compact. To prove this, we
will only show that g(ω0 + 1) — Γ\a<ω1 ΰ(a) is countably compact; that
g{ωQ + 1) — f]a<ωi g{oc) is compact will then follow from Lemma 2.
To this end, let N denote a countable subset of g(ω0 + 1) — Πκ f f l l

There is an a so that g(a) does not meet ΛΓ. In particular then, no
point of g(a + 1) is a limit point of N. Because of property (i), it
must be the case that N has a limit point in g(ωQ + 1) — f\a<ωι g(ot);
and so, g(ω0 + 1) - Π«<ω1 ^ ) is compact 1 But, {^(ω0 + 1) Γ

1 _
is an open cover of g(ω0 + 1) — ΠαrKωi #(#) with no finite subcover,
which is a contradiction from which Claim 1 follows.

Claim 2: , ^ * is a basis for Xτ in X; in particular, if x e X{

and g is the maximal chain in . ^ * centered at #, then {̂ (< )̂|α: is in
the domain of g) is a local basis for cc in X.

Proof of Claim 2. Suppose otherwise. Then there is a point x
of X* so that the maximal chain, g, centered at x does not yield a
basis at x in X; i.e., {#(α:) | a e domain of g} is not a local basis for x
in X. Since the domain of g is countable, there is a first a0 < &)L not
in the domain g. There is a member ΰ of ^ so that if α < <20>
then g(a) is not a subset of B but this means that B is a subset of
each g(a). Then x is in the interior of f)a<ao g(cc). Thus, by our
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construction of £&(%, aQ), there is a member of &(i, a0) that contains
x. This contradicts the maximality of g and it follows that {g(a)\a
is in the domain of g) is a local basis for x in X.

We now have that Ui<ω0 ̂ * is a point countable basis for X.
If έ%f is a cover of the space X and if xe X, then C{x, H) will

denote the set n {He £^\xe H). According to K. Nagami [9], the
space X is a I'-space if there is a sequence j ^ \ 9 J^l, * of locally
finite closed covers of such that if x09 xl9 x29 , is a sequence with
xt e C(x0, ̂ 7) for each 0 < i < ωQ, then {xt} has a cluster point. The
sequence ^7, ̂ , is called a spectral ^-sequence for X.

We will, without loss of generality, assume that each ^ is
closed under intersections and, for each i, ̂ 7+i refines

LEMMA 3. If X is a space with countable large basis dimension
such that each uncountable subset of X has a limit point, then X
is Lindelof.

Proof. Since X has countable large basis dimension, X is sere-
enable. G. Aquaro [1] has proved that every meta-Lindelof (and
thus every screenable) space in which every uncountable set has a
limit point is Lindelof.

THEOREM 2. If X is a regular Σ-space with countable large
basis dimension then X has a point countable basis.

Proof. Let ^7, ̂ ί , be a sequence of locally finite closed
coverings of X given in the definition of a J-space. For each n, let
&n be an open cover of X such that each member of &n intersects
only finitely many members of ^ . Let &l9 &%9 and Xlf X2,
be sequences such that X = \Ji<ωo Xt and ^ is a rank 1 tree of
open sets which contains a basis for each point of Xt.

Define ^ ( i , α), i < ω0, a < ω19 exactly as in the proof of Theorem
1. Let ^ * = U«<ωt *^(i, ά) and define chain in <̂P * as in the proof
to Theorem 1.

Claim 1. Every chain in ^ * is countable.

Proof of Claim 1. Suppose otherwise; i.e., suppose that g is
a chain in ^ * with length ωx. Let K — Γ\a«ox g{ά). Every uncoun-
table of g(ω0) — K has a limit point in g(ω0) — K for suppose otherwise;
that is, suppose that £Πs an uncountable subset of g(ω0) — K with no
limit point in g(ω0) — K.

Suppose that there is a point, h, of H such that, for each n9
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C(h, ̂ l) intersects infinitely many points of H. Then there is a
countable subset N of H with a limit point. Since N is countable,
there is an a < ω1 so that g(a) does not intersect N. It follows
that no point of if is a limit point of N. Hence, no point of K is
a limit point of N; and so, H has a limit point in g(ω0) — K. This
is a contradiction from which it follows that, for each h in H,
there is an integer n(h) such that C(h, n(h)) intersects only finitely
many members of H. Thus, there is an N and an uncountable
subset if* of H so that if foefP, then n(h) = N and {C(Λ, FN)\he
iί*} is an infinite subcollection of J^N, each member of which intersects
g(N). But, g(N) is in ^ ( ΐ , iV) which contradicts the fact that

i, AT) refines 2^. It follows that each uncountable subset of
g(ω0) — K has a limit point in #(ω0) — K; and so, by Lemma 3, g(ω0) —
K is Lindelof. But {g(ω0) — g(a)\a < ω^ is an open cover of g(ω0) —
K with no countable subcover which is a contradiction from which
Claim 1 follows.

That ^ * contains a basis at each point of Xέ follows exactly
as in the proof of Theorem 1. Thus Theorem 2 is proved.

THEOREM 3. If X is a normal Σ-space with countable large
basis dimension, then X is metrizable.

Proof. R. E. Hodel has proved that every J?-space is a /3-space
[8], and that every /3-space is countably metacompact [7]. A sere-
enable countably metacompact space is metacompact. Nagami [10]
has shown that a normal screenable metacompact space is para-
compact. But a paracompact 2*-space with a point-countable base is
metrizable [9].

THEOREM 4. If X is a normal wJ-space with countable large
basis dimension, then X is metrizable.

Proof. As above, X is normal, screenable, and metacompact
(since every wJ-space is a /S-space), hence paracompact. But a
papacompact wz/-space is an ilf-space, hence a I'-space. Thus X is
metrizable.
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