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This paper provides a short proof of the existence of
free-products in the category A -̂groups.

1. Introduction* Graev defined free products in the category
of Hausdorff topological groups, and gave a lengthy proof of their
existence using norms [2]. Hulanicki showed that free products
exist in the category of compact groups [3]. S. A. Morris pointed
out that the later result extends to the category of almost periodic
groups [5]. The proof in the above mentioned paper is correct,
except that it should rely on Graev's proof for the existence of
free products in the category of Hausdorff topological groups and
should not on the erroneous proof in that paper.

The method of proof of this paper has been adopted by Ordman
to prove the existence of free products in the category of A -groups
[6].

2* Definitions and statement of the main result*

DEFINITION 1. a fc^-space is a Hausdorff topological space X
with compact subsets Xn such that: (i) X= Un=i-3Γ»5 (ϋ) X%+ι^Xn

for all n; (iii) a subset A of X is closed in X, if and only if AΓ\Xn

is compact for all n.
By a ^-decomposition X = \J Xn, we mean that Xn have pro-

perties (i), (ii) and (iii).
A &w-group G, is a topological group which is also a &w-space.

We denote by KG the category of &w-groups.

DEFINITION 2. Let G1 and G2 be two fcw-groups. Then, G^G2

is their free product in the category of £w-groups if the following
axioms hold: (i) the underlying group of GX*G2 is their free product
as groups, (ii) Gι and G2 are topological subgroups of G^G2.
(iii) If Ύii Gi~+H> i = 1, 2, are continuous homomorphisms into the
λ^-group H, then they extend uniquely to a continuous homo-
morphism Γ: Gι*G2—>H.

We will refer to the following concept frequently.

DEFINITION 3 (Graev [1]). The Hausdorff topological group F{X)
is a free topological group with basis (X, e) a pointed topological
space, if the following axioms hold: (i) X is a subspace of F(X).
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(ii) X — e generates F(X) freely as a group, (iii) For any continuous
map φ:X~+G, where G is a Hausdorff topological group, and φ(e)
equals the identity of G, then φ extends uniquely to a continuous
homomorphism Φ: F(X) —* G.

The main result. Free products exist in the category of kw-
groups.

3* Proof of the main result. Let ψ: | F(G, V G2) | -+ | G, | * | G2 \
be the homomorphism induced by the inclusion map of Gι V G2

into I Gi |* | Ga|, where GuG2eKG, V denotes the disjoint union
identifying distinguished points, | | is the forgetful functor into the
category of groups and * denotes the free product in the category
of groups, in addition to its use in Definition 2. Denote by K the
kernel of ψ with the subspace topology of F{GX V G2). Our first
object is to prove that K is a closed subset. For then, | Gx | * | G21
with the identification topology of F(Gt V G2) via ψ, is a &w-group,
which we denote by G^*'G2.

To carry out the proof of the just mentioned fact we need
some further notation. The map h: (G, V Gf1 V G2 V G2~T — F(Gt V G2)
is defined to send words in Gx V G2 whose length is at most n, to
their reduced form. This map is obviously continuous, since it is
induced by the multiplication map of F{GX V G2). We also use the
following notation: Zn = Y? x -.. x ϊ ? , where Y? = (L*)p«, pt = ± 1 ,
qt = 1, 2 and G* = UΓ=i 14 a r e hw decompositions, i = 1, 2.

The sets, h[{U V (LΓ)"1 V f i V (Ln

2)~T] which consist of all
reduced words in Li V L2, whose length is at most n, with the
supspace topology of F{Gι V G2), form a /^-decomposition of F(Gt V G2)
[4]. Thus in order to show that K is closed, it suffices to show
that K Π h(Zn) is compact for any n.

Suppose Zn is of the form (Ln

h)
h x ... x (L?0)S % fixed, 1 or 2.

Denote by μ: x GiQ —* Gίo the map induced by the multiplication in
G<0> and denote by φ: Zn -+ x GH the map induced by the inclusion
of LiQ into G v By the continuity of the maps h, φ> μ, the set
K Π h(Zn) = A(ker ^^) is compact. If J?% is not of the above form,
K Π h(Zn) will be, by an induction argument, a product of compact
sets.

Next we prove the Gx *' G2 is a free product. Let t'\ F{Gt V G2) —>
i ϊ be the extension of £*: Gt —> ΐZ", ί = 1, 2, two continuous homomor-
phisms into the λvgroup -ff The homomorphism ψ factors through
tf', i.e., the following diagram commutes:
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H

Since ψ is an identification map, t is continuous. The uniqueness of
t follows from the algebraic structure.

We still have to show that G^.*'' G2 induces the original topology
on \Gt\. Let g:Gt*'G2 be induced by lGι and the constant map on
G2. Since g'^U) Π G1 = U, if U is open in Gl9 U is also open in G[,
where G[ is \G,\ with the subspace topology of Gx *' G2. Suppose
that V is open in Gt*'G2 and let V = F ' Π G> Denote by χ: ̂ (GJ —
^(Gi V G2) the map induced by the inclusion, and p: F(G1)—^G1 the
map which sends a word to its reduced form. Graev proved in [1]
that p is an open map. Since V = piψχ^iV), V is open in Gx.
This proves that G^fG2 induces the original topology on | Gx |. We
conclude that Gx *' G2 is the free product of Gx and G2 in KG.

4* Remarks* In our proof that Gλ*'G2 satisfies property (iii)
of Definition 2 we used only the fact that H is a Hausdorff topo-
logical group. Thus G1 *' G2 is also the free product of Gι and G2

in the category of Hausdorff topological groups.
We point out that the free product in KG is actually the

co-product in KG. This follows from the uniqueness property of
co-products.
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