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It is shown that if the unit ball Bz** of X** is Eberlein
compact in the weak* topology, or if X* is isomorphic to a
subspace of a weakly compactly generated Banach space then
X* possesses the Radon-Nikodym property (RNP). This
extends the classical theorem of N. Dunford and B. J. Pettis.
If X is a Banach space with X**/X separable then both X*
and X** (and hence X) have the RNP. It is also shown that
if a conjugate space X* possesses the RNP and X is weak*
sequentially dense in X** then Bx** is weak* sequentially
compact. Thus, in particular, if X**/X is separable then
Bx*** is weak* sequentially compact.

1* Introduction* A Banach space X is said to have the Radon-
Nίkodiim property (RNP) if for each positive finite measure space
(Ω, Σ, λ) and every λ-continuous vector measure μ: Σ —• X with finite
variation, there exists a Bochner integrable function f:Ω—>X such
that

μ(A) = Bochner \ f(ω)dX for all AeΣ

The classical theorems of Dunford and Pettis [3] and Phillips [6]
show that every separable conjugate space and every reflexive Banach
space has RNP.

Recent work aimed at extending the Radon-Nikodym theorem
to vector measures has yielded more general theorems which charac-
terizes Banach spaces with the Radon-Nikodym property. For the
purposes of this paper, we only list those that will be employed
and refer to [8] for a more detailed introduction.

The two following theorems are essentially due to Uhl [9].

THEOREM 1.1. Let X be a Banach space. Then the following
statements are equivalent:

( i ) X possesses RNP;
(ii) every subspace (by a subspace, we refer to a closed infinite—

dimensional linear submanifold) of X possesses RNP;
(iii) every separable subspace of X possesses RNP.

For a Banach space X, denote by X* its conjugate space.
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THEOREM 1.2. If for every separable subspace Y of X, Y* is
separable. Then X* has RNP.

The converse of Theorem 1.2 is proved by Stegall [8], i.e.,

THEOREM 1.3 Suppose X* has RNP. Then for every separable
subspace Y of X, F* is separable.

We shall use these three theorems to deduce our main results.
It seems to be an open question whether a conjugate Banach space
X* has RNP whenever the unit ball Bx** of X** is weak* sequentially
compact. Our result shows that when Bx**, in its weak* topology,
is homeomorphic to a weakly compact subset of some Banach space,
or when X* is isomorphic to a subspace of a weakly compactly
generated Banach space (in either case, Bx** is weak* sequentially
compact) then X* possesses the RNP. This result improves the
classical Dunford-Pettis-Phillips theorem on RNP.

The possession of RNP by the conjugate spaces of the Banach
spaces X with X**/X separable is investigated. For such spaces X,
both X* and X** (and hence X) have the RNP.

It is also shown that if a conjugate space X* possesses the RNP
and X is weak* sequentially dense in X** then Bx** is weak* se-
quentially compact. Thus, in particular, if X**/X is separable then
Bx^ is weak* sequentially compact.

2* The Radon-Nikodym property in X* and the weak* se-
quential compactness of the unit ball of X**. In the terminology
of [4], a Banach space X is called quasi-separable if for each
separable subspace Y of X, Y* is separable; on account of Theorems
1.2 and 1.3, this concept is equivalent to the possession of RNP by
X*. We indicate here that if X is quasi-separable then ever con-
tinuous linear closed image of X has the same property. For if Z
is a continuous linear image of X then Z* is isomorphic to a
subspace of X*; Z* then has RNP. Thus by Theorem 1.3, every
separable subspace of Z has a separable conjugate. This solves the
question proposed by Lacey and Whitley [4] that whether a quotient
space of a quasi-separable space is itself quasi-separable.

It is also not known whether a Banach space X is quasi-separable
if Bx** is weak* sequentially compact. This can be equivalently
translated as whether a conjugate space X* has RNP if Bx** is weak*
sequentially compact. Before proceeding to our discussion, recall
that a Banach space X is said to be weakly compactly generated
(WCG) if it is the closed span of some weakly compact subset of
itself. As a result of Amir and Lindenstrauss [1], X is WCG if and
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only if Bx* in its weak* topology, is affine homeomorphic to a weakly
compact subset of some Banach space. A compact Hausdorίf space
S is Eberlein compact if it is homeomorphic to a weakly compact
subset of some Banach space. In view of Eberlein's theorem, S is
sequentially compact if it is Eberlein compact. Our result shows
that if Bx** is Eberlein compact in its weak* topology, or if X* is
isomorphic to a subspace of a WCG space then X* has RNP.

For a subspace F c l , set

Y1 = {/ e X*: f(y) = 0 for all yeY} .

THEOREM 2.1. Let X be a Banach space. Suppose Bx** is Eberlein
compact in the weak* topology; then X* possesses the RNP.

Proof. In view of Theorem 1.2, it suffices to show that every
separable subspace of X has a separable conjugate space.

Let Y be a separable subspace of X. By Goldstine's theorem,
Bγ is weak*-dense in Bγ**; thus Bγ** is weak*-separable. Let
J: Y-+X be the inclusion map. Observe that J**: Γ** ~->X** is a
weak* isomorphism of Γ** onto YLL with J**(jBr**) = Bγ±±. Hence
JBFII is weak*-separable. Moreover, J5ri± is weak* closed in Bx**>
which is Eberlein compact by hypothesis, whence Bγ±± is itself
Eberlein compact.

It is well known that a separable Eberlein compact space is
metrizable. We have then that BYL± is metrizable. This then implies
that Bγ** is metrizable. Therefore, F* is separable; which completes
the proof.

THEOREM 2.2. Suppose X* is isomorphic to a subspace of a
WCG Banach space Z; then X* possesses RNP.

Proof. Again, it suffices to show that every separable subspace
of X. has a separable conjugate space. Let 7 be a separable
subspace of X Apply the same argument as in the proof of Theorem
2.1, we see that 2?F** is weak*-separable.

Let (&**) be a weak*-dense sequence in Bγn and J: X*-+Z be
an isomorphism. J*:Z*—>X** is then surjective. By the Open
Mapping Theorem, there exists a bounded sequence (z%) in Z* such
that J*zΐ = x**. Denote by W the weak*-closure of {*£}. By the
hypothesis that Z is WCG, Bz* is then Eberlein compact in the weak*
topology and hence W is also Eberlein compact. This together with
the separability of W implies that W is a compact metric space in
the weak* topology. J*(PΓ) is then weak* compact and contains
{#**}cJ5Γ±i. Hence J*(W) = Bγ±±. Moreover, being a continuous
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image of a compact metric space, i?ri± is compact metrizable. There-
fore, Bγ** is metrizable and Y* is separable.

It follows immediately from either Theorem 2.1 or Theorem 2.2
that

COROLLARY 2.3. If X* is WCG then X* has RNP.

REMARK. Corollary 2.3 can be proved by use of Theorem 1.2
and the fact that if a Banach space Y is separable and Y* is WCG
then Y* is also separable. This result improves the classical Dunford-
Pettis-Phillips Theorem on RNP, and is well known at present.
However, recently H. P. Rosenthal [7] has given a counter-example
to the heredity problem for WGG Banach space. Indeed, the Banach
space XB he exhibited has the following properties: (i) XB is a
subspace of a WCG space Lι(μ) and XR is not WCG; (ii) XR is
isomorphic to a conjugate Banach space; (iii) the unit ball of X% is
Eberlein compact in its weak* topology. Thus our independent proof
appears necessary.

Observe that those conjugate Banach spaces X* with RNP
discussed in the above theorems have the property that BΣ** is weak*
sequentially compact. For the converse, we have obtained sufficient
conditions to ensure that Bx** is weak* sequentially compact when-
ever X* has the RNP. In the following theorem, we set for each
A c X * *

Aτ = {f e X*: x**(f) = 0 for all x** e A}

and write "**" whenever two Banach spaces are isometrically iso-
morphic.

THEOREM 2.4. If X* possesses the RNP and X is weak* sequen-
tially dense in X**, then Bx** is weak* sequentially compact.

Proof. Let (a?**) be a sequence in Bx**. By assumption, X is
weak* sequentially dense in X**; for each #**, there exists a sequence
(xi)k in X such that {xk

n)k converges to x%* in the weak* topology
of X**.

Let Ϋ be the weak* closed subspace of X** spanned by {#£*}
and Z be the weak* closed subspace of X** spanned by {xl}n>k. We
have then that ΫaZ and

Let Z be the closed subspace of X spanned by {xt}n,k. Observe that
Z is weak*-dense in Z11, whence Z11 = Z. By hypothesis, X* has
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RNP; hence Z* is separable. But

Z*f*X*/{x*}lk and ΫaZ;

X*/{α*.*}τ is a continuous linear image of X*/{x$ϊth. Thus X*/{tf*:*}τ

is separable. It follows then that the unit ball of (X*/{#**}τ)* is
weak* sequentially compact.

Moreover, since (X*/{#**}τ)* is weak* isomorphic to Ϋ, the sequence
(#**) in Ϋ has a weak* convergent subsequence. This is equivalent
to saying that Bx** is weak* sequentially compact.

The Theorem above will be used in § 3 to prove that if X**/X
is separable then Bx*** is weak* sequentially compact.

3. The Banach space X with X**/X separable* In this section,
we give examples of Banach space X such that both X* and X**
(and hence X) have RNP. The Banach space X we are considering
has the property that X* is WCG and j?x*** is weak* sequentially
compact.

THEOREM 3.1. Let X be a Banach space such that X**/X* is
separable. Then both X* and X** has RNP.

Proof. In view of Theorem 1.2, it suffices to show that every
separable subspace of X (resp. X*) has a separable conjugate space.

Let F be a separable subspace of X. Note that Γ**/F is
isomorphic to a subspace of X**/X* [2, p. 908]. By hypothesis,
X**/X is separable, so is F**/F. It follows then that Γ** and hence
Y"* is separable.

Assume Z is a separable subspace of X*. It is known that
there exists a separable subspace W of X such that Z is isometrically
isomorphic to a subspace of W*. Z* is then a continuous linear
image of the separable space TF**. Thus Z* is separable.

REMARK. It is obvious that if both X* and X** have RNP
then every separable subspace of X has a separable second conjugate.
Indeed, if Y is a separable subspace of X, F* is then separable since
X* has RNP. But F** is isometrically isomorphic to a subspace of
X**; F** has RNP. Thus by Theorem 1.3, F** is separable. Note
that the given hypothesis doesn't necessarily imply that X**/X is
separable. As a counterexample, we refer to [5, p. 124].

Together with the result of Theorem 2.4, we obtain

COROLLARY 3.2. Suppose X**/X is separable. Then Bx** and
Bx*** (and hence Bx*) are sequentially compact in their respective
weak* topologies.
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Proof. Since X**/X is separable, X* and X** have RNP by
Theorem 3.1. Also a result of [5, p. 123] shows that X* (resp. X**)
is weak* sequentially dense in X** (resp. X***). Thus Bx** (resp.
Bx***) is weak* sequentially compact by Theorem 2.4. Moreover,
since Bx* is a continuous linear image of Bx*** in the respective weak*
topologies, Bx* is then weak* sequentially compact.

COROLLARY 3.3. Suppose X is non-reflexive and X**/X is
separable. Then neither X nor X* is weakly sequentially complete.

Proof. Follows from Theorem 3.1 and Theorem 1.3.
As a final result, we further prove that when X**/X is separable

X* is indeed WCG.

LEMMA 3.4. Let Z be a WCG subspace of a Banach space Y
such that Y/Z is separable. Then Y is WCG.

Proof. YJZ is separable, hence there exists a separable subspace
WaY such that Z + W is dense in Y. But both W and Z are
WCG; thus Y is WCG.

THEOREM 3.5. Suppose X**/X is separable. Then X* is WCG.

Proof. It is known that, under the given hypothesis, there exists
a separable subspace Z such that X/Z is reflexive [5, p. 121]. We
have then that ZL is reflexive and X*/^1 is separable. It follows
from Lemma 3.4 that X* is (WCG)
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