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AMITSUR COHOMOLOGY OF QUADRATIC EXTENSIONS:

FORMULAS AND NUMBER-THEORETIC EXAMPLES

RICHARD T. BUMBY AND DAVID E. DOBBS

Computations of Amitsur cohomology (in the units functor
U) for extensions of rings of algebraic integers have been
achieved in two ways: via Mayer-Vietoris sequences (by Morris
and Mandelberg) and via cohomology in the functor UK/U (by
the second-named author). One of the goals of these computat-
ions has been to shed light on the Chase-Rosenberg homomor-
phism from Amitsur cohomology to the split Brauer group. In
this paper we obtain, for quadratic ring extensions, formulas for
cohomology in U and in UK/U, which have wider application
than the corresponding work of Morris and Mandelberg. Our
formulas lead to examples showing that the Chase-Rosenberg
homomorphism, arising from a quadratic extension of rings of
algebraic integers, need not be injective or surjective.

Our methods are direct and, in particular, avoid explicit use of
Mayer-Vietoris sequences. Section 2 studies the embedding of certain
Amitsur cochains in Cartesian products. Section 3 contains the
cohomology computations which, together with [4, Corollary 1.5] and
the Hasse norm principle of class field theory, lead to the desired
examples in §4.

We employ the standard notation concerning Amitsur cohomology
(cf. [1, p. 29]) and assume familiarity with [4, §1],

2. Cochain and coboundary computations. The
standing hypotheses for §§2 and 3 are that R is an integral domain with
quotient field K, that 5 is a flat R- subalgebra of a quadratic (two-
dimensional separable) field extension L of K, and that the Galois group
G of LIK fixes 5 as a set.

Note that I?-flatness of 5 allows us to view S1
 =<S)RS as an

R- subalgebra of V = ®χL. Since G maps S into itself, the explicit
K-algebra isomorphism L1—»ΠG-'L given in [1, Lemma 5.1] may be
used to identify S' with a subring of ΠG- S. Provided that S is taken to
act on 5' by multiplication with the first tensor factor, this identification
clearly holds as S-algebras.

Denote the action of the nonidentity element σ of G by α-*α'. It
was shown in the proof of [4, Proposition 1.8] that the Amitsur
coboundary dι: U(L2)-* £/(L3), viewed as a homomorphism from
ΠGU(L) to lie*U(L), sends (α, b) to (α, α, α', α xbb'). (Observe that the
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indices of the above, and following, Cartesian products are subjected to
lexicographic order, with 1 ̂  σ.) A similar routine computation reve-
als that d2: U(L3)-+U(L4) sends (a,b,c,d) to

(1, ba\ 1, ab-\ afc~\bfc\ c'a~\ d'dxb-χc).

Inasmuch as these formulas also describe the coboundaries in the
Amitsur complex C(S/R, U), it becomes imperative to know which
tuples in Πσ'-«17(S) arise from elements of £/(S')> for i =2,3. The
next two propositions settle this issue.

First, we give a key definition. Let I be the ideal of 5 generated
by {a-a': a ES}.

P R O P O S I T I O N , (i) S2 = {(a, b)ESxS:a=b (/)}.
(ii) U(S2) = [U(S) x U(S)] Π S\

Proof, (i): Let (a,b)ES2; in other words, suppose that there
exists ξ = Σai<g)βi E S2 such that a^Σaβi and &=Σα,ft ' . If
m: L2^>L is the multiplication map, applying m and m ( l ® σ ) to ξ
shows that 5 contains both a and b. It is clear that a-b El; i.e.,

Conversely, let (α,b) e 5 x 5 with a=b(I). Since (α,b) =
(α,α) + (0,b - α ) , it suffices to prove that S2 contains both {a,a) and
{0} x I. For the former, observe that (α, a) = a (g) 1. For the latter, our
earlier remarks establish that 5 2 is an 5-submodule of 5 x 5, so that we
need only to prove (0,c -c')ES2 for each c E S. This, however, is
immediate: (0,c - c') = c (g)l - l(g)c.

(ii): As the injection S2^>S x S is a ring homomorphism, it is
clear that U(S2) C[U(S) x U(S)] Π S2. For the reverse inclusion, (i)
reduces us to showing that, if a and b in U(S) satisfy a = b(I), then
a~λ = b~\I). As a~ι — b1 = a~ιb~ι(b —a), the proof is complete.

We pause to observe that the proof of part (i) of the preceding
proposition was obtained by rendering basis-free Morris' proof of [7,
Lemma 4.0]. The computational method used to establish (ii) replaces
the Mayer-Vietoris argument of [7, Theorem 4.1].

PROPOSITION, (i) S3 = {(a, b,c,d)ES x S x 5 x S:
a=b=c(I),a+c=b+d(I2)}.

(ii) U(S') = [U(S) x U(S) x U(S) x U(S)] Π S3.

Proof, (i): Let (a,b,c,d)E S 3 ; i.e., suppose that ξ =
Σai<g)βi<g)Ύi ES3 satisfies a = Σ α I # γ I , b =Σα,/3 ιγ I ', c =Σα ij8,/γ,/ and
d = Σctiβi'yi. It is clear that a = b = c(/). Moreover α + c s
b + d(I2) since α - b + c - d = ΣαΛft - ft') (γ, - γ,').

Conversely, if a,b,c,d in 5 satisfy a=b=c{I) and α + c =
fe +rf(/2), note that
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(α, ft, c, d) = (a, a, a, a) + (0,0, c - α, c - a)

+ (0,b -α,0,α - b )

+ (0,0,0, -a+b-c + d).

Since (0, a, a, a) = 0 (g) 1 (g) 1 and S3 is an 5-submodule of 5 x 5 x 5 x
5, it suffices to prove that 5 3 contains (0,0,e - e',e — e'), (0,e-e\
0, e' - e) and (0,0,0,(e -e') (/-/')) for each e and / in S. To this end,
we need only to consider (e(g)l - l(g)e)(g)l, 1 (g)(β ® 1 - 1 (g)e) and

respectively.
(ii): By reasoning as in the preceding proposition, it suffices to

show that, if a, b,c,d E t/(S) satisfy a = 6 = c(I) and α + c =
b+d(P)9 then α"1-^ c"1 = b~ι + d~\P). Taking congruences modulo
I 2, we have

a-χ-b-χ + c-χ-d-χ = a -ιb]c-]dι [be (a - b + c)

- ac(a - b + c) + ab(a - b + c)~ abc]

= a-ίb-ίc-}d-ί[-c(a-b)2-a(b-c)2

+ b(c-a)2]

to complete the proof.

3. Formulas for cohomology. It will be convenient to
let N denote the field norm NL/K: U(L)-+U(K) and to view
H\SIR, UKIU) as a subgroup of H2(S/Ry U) by means of the (injec-
tive) connecting homomorphism (cf. [4, p. 240], [5]). In conjunction
with the standing hypotheses announced earlier, we now assume that S
is not contained in K. This readily implies that the multiplication map
S §§RK -^L is an isomorphism since [L: K] = 2.

THEOREM. Let A = {x G (7(5): x = 1(/2)} and B = {x G (7(5):
x = 1(1)}. Then:

(i) H\SIR, UKIU) = [N(U(L))ΠA]/N(B).
(ii) H2(SIR,U) = [KΠA]IN(B).
(iii) H2(SIR, U)IH\SIR, UKIU) = [K ΠA]I[N(U(L)) n Λ].

Proof, (i): As usual, the R-flatness of 5 and the isomorphism
S(g)RK-*L yield Cn(S/R, UK/U)= U(Ln+ι)/U(Sn+i). If D =
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{ξ(ΞU(L2): d"(£)E(7(53)}, then the first cocycle group of
C(S/R, UK/U) is {ξ • (7(52): ξeD}, so that a standard isomorphism
theorem implies H\S/R, UK/U) = D l[d\U{L)) • (7(52)]. Since JV is
given by N(a) = aa', the material in §2 permits us to identify D with

E = {(a,b)E (7(L) x U(L): a E U(S), N(b)E (7(5),
N(a) = N(b)x(P)}

= {fl(l,c)Gί/(L)x (7(L): α £ (7(5), c E (7(L), N(c)E A}.

As ί/° is given by d%v) = v~l<g>v, Hubert's Theorem 90 shows that
d%U(L)) is regarded as {l}xker(JV); the preceding identification of D
with E then causes d°(U(L)) U(S2) to be identified with

F = [{l}xker(ΛΓ)] {α(l ,c)et/(5)x£/(S):ce£}.

Thus, Hι(S/R,UK/U) = E/F. Observe that the homomorphism
h: U(L)xU(L)-*U(L)xU(K), given by h(x,y) = (x,N(yχ-1)), car-
ries E onto U(S) x [N(U(L)) D A] and F onto £/(S) x N(B). Since
ker(ή)CF, standard isomorphism theorems apply, and establish (i).

(ii): The material in section 2 allows us to describe the second
cocycle and coboundary groups of C(S/R, U), so that H\S/R, U) =
JIM, where

/ = {(α,α,α',d)E U(S) x U(S) x 17(5) x U(S):
α'^d(P), d'd-ι = α(αT1}

and

M = {(α,α,α',α-]bb') ε 17(5) x 1/(5) x 1/(5) x 1/(5):
b E (7(5), α =

Projection onto the last two coordinates is an isomorphism that iden-
tifies / with

P = {(α,d) E 1/(5) x U(S): α = d(P), d'd-' = α'α'1}

= {α(l ,c)ε 17(5) x t/(5): c' = c,c = 1(J2)}

and identifies M with

Q = {(α;(α'rιbb')<= U(S)x U(S): b E 1/(5), α' = b(I)}

= {α(l,N(c))ε 1/(5) x (7(5): c e β ) .

Thus, H\SIR,U) = PIQ. Since K is the fixed field of G, the
isomorphism given by (JC,y)—•(*,yx"1) carries P onto t/(5)x
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(KΠA). As Q is sent onto U(S)x N(B), isomorphism theorems
apply again, and establish (ii).

(iii): It suffices to prove that the isomorphism in (i) is the
restriction to H\S/R,UKIU) of the isomorphism in (ii). Let ξ =
Σα, (g)/3, E D; set a = Σα,/?, and b = Σα./V It is routine to check that
the connecting homomorphism sends the H\SjR, UK/U)-cohomology
class of ξ to the coset in J/M represented by (a,a,a\a~λbbf). The
map in (ii) then sends this coset (cohomology class) to the N(B)~coset
represented by N(ba~ι). This is precisely the effect of the isomorph-
ism in (i) on the cohomology class of ξ, and so the proof is complete.

REMARK. Suppose U(S) ΠKCR. If W = {x e 17(1?): x s l(J2)},
then the formulas in the preceeding theorem may be restated as
H\SIR,UKIU) = [N(U(L))ΠW]IN(B), H2(S/R,U)= WIN(B),
and H2(SIR,U)/HXSIR,UK/U)=WI[N(U(L))nW]. This for-
mula for H2(S/R, U) was obtained by Mandelberg [6, Theorem 4.24] for
the special case in which R is integrally closed, S is integral over R,
char(K)^2, and there exists a E 5 such that 5 is β-free with basis
{l,a}. As our work does not place restrictions on characteristic or
bases, it applies to examples such as:

(i) R = F2[t], L = splitting field of x2 + x +1 over K;
(ii) R = Z[( - 30)1/2], L = K(6m) for which [6, Theorem 4.24] can-

not be used.

4. Number-theoretic examples. We fix notation and as-
sumptions for the remarks and examples given below: L is a biquadra-
tic field extension of Q, R is the ring of algebraic integers of a quadratic
subfield K of L, and 5 is a ring properly containing R and contained in
the ring of algebraic integers of L. The standing hypotheses of §§2 and
3 hold in this context. We also define / as in §2, and let N, A and B be
as in the theorem of §3. Note that I2 may be interpreted as the
discriminant ideal of S/R. Because of the explicit description of the
algebraic integers in biquadratic fields given by Williams [10], we will
customarily leave to the reader, without further comment, verification
of the values and basic properties of the ideals I2 occurring in our
examples. One such result, which occurs frequently in our examples,
states: whenever K = Q(dm) and L = K({dx)

xl2) and we write dxd2 = dk2

with discriminants d, du and d2; then /2 = (fc).
Since L/K is a quadratic extension of algebraic number fields, the

expressions studied in §3 may be reinterpreted. The Hasse norm
theorem [8, page 185] implies that an element x ELK ΠΛ belongs to
N(U(L)) precisely in case x is a local norm at all places. At a place of
K which splits in L, all elements are norms. Moreover, x is a local
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norm at any place arising from an inertial prime, since norms are
characterized as being of even order and x GA C 1/(5) has order zero.
If p is a ramified prime of R, then p |/2, and so x = l(p); in case p does
not lie over (2) in Z, this congruence suffices to make x a local square,
and thus a local norm. The ramified primes lying over (2) require
further analysis. While x = 1(/2) does suffice to show that x is a local
norm In general, a discussion of the relevant local class field theory
would lead us far afield. For application to our examples, however, we
need only consider such primes in biquadratic extensions of Q. This
reduces the problem to computing the properties of a finite number of
extensions of Q2. Hence we will not distinguish the primes dividing (2)
from other primes. Finally, if an archimedean place does not split, we
obtain an embedding of K in R with R(g)κL = C; at such a place, x is a
local norm if and only if JC is positive in R. Thus, x E K Π A belongs
to N(U(L)) precisely when x is positive at each real place of K which
does not split in L.

The exact sequence

was developed in [4, Corollary 1.5] in order to study the map p
appearing in [2, Theorem 7.6]. Examples in which p is an isomorphism
abound ([2, Corollary 7.7], [3, Corollary 4.2]); we shall use this sequence
to give some examples for which p fails to be an isomorphism. Our
examples include the first for which H2(S/R, U) ^ 0. In addition, they
are simpler than one might imagine in light of recent results of
Mandelberg [6, Corollary 4.25 and Remark 4.26], in which H\SIR, U) is
shown to vanish for a wide range of quadratic extensions of rings of
algebraic integers in imaginary quadratic fields.

Before presenting our examples, we pause to note that previous
calculations showing H2(T/Z,U) = 0 for an order T in a quadratic
extension of Q([7, Theorems 3.0 and 3.2], [4, Proposition 1.9 and
Remark 1.10(b)], [6, Theorem 4.27]) follow from the theorem in §3 and
the observation that no discriminant divides 2. Indeed, no proper
extension of Z has discriminant 1 [9, Proposition 3-7-15 and Theorem 5-
4-10]. Moreover, no extension of Z has discriminant 2, because of the
theorem of Stickelberger [9, Proposition 4-8-19], whose proof yields the
statement: the discriminant of any finite extension of a principal ideal
domain is congruent to a square modulo (4). We conjecture that the
theorem in §3 generalizes to a class of higher-dimensional extensions,
with "/ 2 " replaced by "the discriminant" in the definition of A if so, the
preceding argument implies H2(T/Z, U) = 0 for such extensions Γ/Z.

EXAMPLE 1. This example treats various imaginary K. First, let
K be either (i) Q((-30)1/2) or (ii) Q((-42)1/2); let L = K((6)1/2). Then
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I2 = (2) in (i) and I2 = (1) in (ii). For both cases, K Π A = {± 1} and
B = U(S) C{±(5 + 2(6)1/2)n: n E Z}. As ΛΓ(B) = {1}, the formula in §3
implies that H2(S/R, U) = Z/2Z. Since K has no real places,
Hι(S/R, UK/U) = Z/2Z also, and p is the zero map.

Next, let K be any imaginary quadratic algebraic number field
other than Q((-3)1/2) and Q((- 1)1/2). As U(R) = {± 1}, we find that
H2(S/R, U) is nonzero (and, hence, isomorphic to Z/2Z) if and only if
N(B) = {1} and I2 is either (1) or (2). One verifies from [10] that I2 = (1)
when the discriminant d of K can be written as d = dxd2, such that
L = K({dx)

m) = Q((d,)1/2,(d2)
1/2) and du d2 are each discriminants. Simi-

larly, I2 = (2) arises from Ad = dxd2. In these cases, U(S) is contained
in the real quadratic subfield of L and, hence, is equal to B.

To fabricate examples, (including (i) and (ii) above), let dx be a
positive square-free rational integer such that each unit of Q((di)1/2) has
norm 1. (For instance, choose square-free positive dx divisible by a
prime congruent to 3 modulo 4.) Then choose square-free negative
d2EZ such that (d],d2) = (\) and not both du d2 are congruent to 3
modulo 4. Set K = Q((dxd2)

m) and L = K((dx)
m). The preceding

work shows that H2(S IR, U) = Z/2Z = H\S IR, UK IU) and p is the
zero map. Note that I2 = (2), so that L IK is ramified, if one of du d2 is
even and the other is congruent to 3 modulo 4; in the remaining case,
J2 = (l) and L/K is unramified.

If K =Q((-3)1 / 2), the general version of Stickelberger's theorem
implies that H2(S/R, U) = 0 for each quadratic extension S of /?, since,
by analogy with the case R = Z, it shows that no difference of units
could be divisible by a discriminant.

EXAMPLE 2. Let K be real and L complex. Then K Π A has the
form {± an: n E Z} if I21 (2) otherwise, K Π A = {an}. In either case,
N(U(L)) does not contain - 1 (since norms are totally positive) and
N(B) contains a2. The possible cases are tabulated below.

KΠA N(U(L))ΠA N(B) H\S/R,U) Hι(S/R,UK/U)

(a) {±an} {an} {an} Z/2Z 0
(b) {±an} {an} {a2n} Z/2Z0Z/2Z Z/2Z
(c) {±an} {a2n} {a2n} Z/2Z0Z/2Z 0
(d) {an} {an} {a11} 0 0
(e) {an\ {an} {a2n} Z/2Z Z/2Z
(f) {an} {a2n} {a2n} Z/2Z 0

As H\S/R, UK/U) = ker(p) and the split Brauer group B(S/R) is
known to be Z/2Z, case (c) cannot arise. A direct proof of this will now
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be given. If case (c) holds, then /2 |(2); moreover, neither a nor - a is
totally positive, whence NK/Q(a) = — 1. As every odd divisor of the
discriminant d of K is congruent to 1 modulo 4, d cannot be expressed
as the product of two negative discriminants. Thus /2 = (2), and
R = {a + bDm: α,b EZ} for some D = 2(4). If a = a + bDm, then
NKjQ(a)= - 1 implies that a and b are each odd; this contradicts
a = 1(/2), thus proving (again) that case (c) cannot arise.

We now proceed to show that the other five cases do arise. First,
examples giving (a) and (b) with J2 = (l) are (a) K = Q(61/2), L =
K((-2)1/2) and (b) K = Q(31/2), L = K((- 1)I/2). Whenever I2 = (1), we
are in case (a) or (b); the difference is whether the extension L contains
(-α) I / 2 (case (a)) or not (case (b)). If J2 = (2), we must have K =
Q(Dm) with D > 0 and D^2(mod 4) and L = X(φ,)1 / 2) with DX\D,
Pi < 0, and Dλ = 3 (mod 4). As in our analysis of case (c), a unit, β,
with Nκ/Q(j8)= - 1 cannot belong to KΠA. On the other hand,
β EB. Thus, when R contains such β, any L with I2 = (2) gives case
(a). If R contains no such β, every unit belongs to A, and the test is as
in the case of I2 = (1). Thus K = Q(101/2), L = K(( - 5)1/2) or K(( - l)m)
gives (a) since NKIQ (3 + 101/2) = - 1. If K = Q(341/2), the fundamental
unit is 35 + 6(34)I/2 = (18I/2 + 171/2)2; then L = K(( - \Ί)m) gives (a), while
L=K((-1) 1 / 2 ) gives (b).

In constructing examples of (d), (e) and (f), we expect that R and S
will have the same units (actually, if I2 Jί 2, any new units must be roots
of unity). Case (d) then requires that there be units congruent to 1
modulo / but not modulo J2, whose square is congruent to 1 modulo
I2. Some examples of (d) can be constructed with I2 = (4) if K =
Q(DI/2) with p > 0, P = 1 (mod 4), when the fundamental unit of R has
norm - 1. In this case, there are units of norm - 1 congruent to 1
modulo 2; these cannot be congruent to 1 modulo 4. To achieve
I2 = (4), take L = K(φ,)1 / 2) with D,<0, D j D , D , ^ 3 (mod 4) (e.g.,
D,= -1). Thus we could take X=Q(51 / 2), L = K((- 1)1/2). Here
B = {(2 + (5)1/2)Λ} and A = N(B) = {(2 + (5)1/2)2"}.

Another family of examples of (d) can be constructed as
follows. Choose D > 0, D = 3 (mod 4) with fundamental unit of
R =Z[Dm] denoted β where β = Dm(mod 2) and β > 0 (e.g. Ό = 3,
β = 2 + (3)1/2). Then (βn+ι - β~n)l(β - 1) is an odd integer cn such that
β2n+ι ΞE i (mod c ) . Take L = K((- 2cn)

m) which has I2 = (4c). Thus
β = {p*2«+i)*} a n d A = N ( β ) = {β^n+o*} O n t h e o t h e r h a n d ? i f κ =

Q((13 17)1/2), case (d) cannot arise for any L (for any unit a = 1 (mod 2),
a = 1 (mod 8)).

It is easy to give examples over any R for which A = B: e.g. by
choosing odd factors of I2 one can force the elements of B to be
congruent to 1 modulo 8 and hence to belong to A. The generator, α, of
A must have Nκ(Q(a)= + 1 . Indeed, a = l (I2) requires α' = l(J2)
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since P is a rational ideal, and a' = - α"1 would require 2 E P . Both
conjugates of a have the same sign: if positive, then (e); if negative,
then (f) If K =Q(dm) and L = Q((rf,)I/2, (</2)

I/2) where rf, </„ rf2 are
discriminants and dxd2 = dk2, then /2 = (/c), so one can easily find
extensions having any value of P which satisfies: (i) odd primes dividing
d do not occur, (ii) other odd primes occur to at most the first power,
(iii) 2 occurs to a power depending on the power of 2 occurring in d, du

and d2 (at most the third power).
If the positive generator β of the units of R with norm 1 has odd

order modulo any divisor of I2, then the generator of A cannot be
negative. This makes examples of case (e) easy to construct over any
i?. For example, if R = Z[21/2], /3=3 + 2(2)1/2 has order 3 modulo
7. Taking L = K((- 7)1/2), P = (7), and hence A = {j83n} =
A Π N(U(L)). This procedure produces examples over any real quad-
ratic R for which the map p is neither a monomorphism nor an
epimorphism.

To produce examples of (f) requires more care since we must find a
possible value of I2 arising from an L/K of this type modulo which
( - β) has odd order. To do this, consider the factors of t2k+ι=

(βk+ι + β~k)l(β + 1) or t2k = βk + β~k for possible values of P. If K is
generated by the square root of a square-free positive even integer, 2
will occur to at most the first power in P\ thus, there is no difficulty
synthesizing examples of L from the tn. If R = Z[21/2], t3 = 5 and
t2 = 6. For L=K((-3)m), P = (3) and A ={(~β)2n}; for L =
K((-5)1/2), P = (10) and β 3 = 99 + 70(2)1/2s - l(/2), giving A =
{(-β)3"}. If # =Q(dm) with d > 0 and divisible by a prime of the
form Ak -1, then every odd value of P can be realized. Thus over
K = Q(211/2), the fundamental unit is (5 + 211/2)/2, t2 = 5, U = 4, t4 = 23,
ί 5 =19. We can get I 2 = (5), (23), or (19) from L = K((-15)1/2),
K((-23)1/2), or K((- 19)I/2), respectively.

In the remaining cases, synthesis of examples may be required to
follow a different route. To illustrate, consider K = Q(171/2) for which
β =(4+171/2)2 = 33 + 8(17)1/2. Here ί 2 π^2(mod 8), t2n+ί s l (mod 8);
hence one would have difficulty identifying any tn which could be
divisible by an admissible /2. However, if q is any prime of the form
4k - 1 which is also a quadratic non residue modulo 17, then: (i) q is an
inertial prime of K (ii) the units of R modulo q form a cyclic group of
order q2- 1; (iii) the subgroup of elements of norm 1 has order q + 1;
(iv) an element of the subgroup which is the square of an element not in
the subgroup has order divisible by the largest power of 2 dividing q + 1,
and has a power which is congruent to - 1 modulo q (v) thus q must
divide some tn. For this particular K, we may take L = K((-q)m)
where q is a prime congruent to 3, 7, 11, 23, 27, 31, 39, or 63 modulo
68. This procedure can be modified to cover those choices of R,
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whether or not they contain units of norm - 1, whose discriminant over
Q is divisible only by primes of the form 4)t + l. Over any real
quadratic field K, one can give infinitely many choices of L which give
(e) and infinitely many L which give (f).

The values of H2(S/R, U) given above exceed the bounds given by
Mandelberg for special types of quadratic ring extensions [6, Corollary
4.25 and Remark 4.26]. On the other hand, they do sharpen the bound
of Πf=] (Z/2Z) which follows from the bound on the cochain group given
by Dobbs [3, Proposition 2.1]. We hope that our examples will serve to
clarify the role of the units of finite order in the computation of Amitsur
cohomology.
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